7.5
CWE
134 20
Advisory Published
CVE Published
Updated

CVE-2020-15203: Denial of Service in Tensorflow

First published: Fri Sep 25 2020(Updated: )

### Impact By controlling the `fill` argument of [`tf.strings.as_string`](https://www.tensorflow.org/api_docs/python/tf/strings/as_string), a malicious attacker is able to trigger a format string vulnerability due to the way the internal format use in a `printf` call is constructed: https://github.com/tensorflow/tensorflow/blob/0e68f4d3295eb0281a517c3662f6698992b7b2cf/tensorflow/core/kernels/as_string_op.cc#L68-L74 This can result in unexpected output: ```python In [1]: tf.strings.as_string(input=[1234], width=6, fill='-') Out[1]: <tf.Tensor: shape=(1,), dtype=string, numpy=array(['1234 '], dtype=object)> In [2]: tf.strings.as_string(input=[1234], width=6, fill='+') Out[2]: <tf.Tensor: shape=(1,), dtype=string, numpy=array([' +1234'], dtype=object)> In [3]: tf.strings.as_string(input=[1234], width=6, fill="h") Out[3]: <tf.Tensor: shape=(1,), dtype=string, numpy=array(['%6d'], dtype=object)> In [4]: tf.strings.as_string(input=[1234], width=6, fill="d") Out[4]: <tf.Tensor: shape=(1,), dtype=string, numpy=array(['12346d'], dtype=object)> In [5]: tf.strings.as_string(input=[1234], width=6, fill="o") Out[5]: <tf.Tensor: shape=(1,), dtype=string, numpy=array(['23226d'], dtype=object)> In [6]: tf.strings.as_string(input=[1234], width=6, fill="x") Out[6]: <tf.Tensor: shape=(1,), dtype=string, numpy=array(['4d26d'], dtype=object)> In [7]: tf.strings.as_string(input=[1234], width=6, fill="g") Out[7]: <tf.Tensor: shape=(1,), dtype=string, numpy=array(['8.67458e-3116d'], dtype=object)> In [8]: tf.strings.as_string(input=[1234], width=6, fill="a") Out[8]: <tf.Tensor: shape=(1,), dtype=string, numpy=array(['0x0.00ff7eebb4d4p-10226d'], dtype=object)> In [9]: tf.strings.as_string(input=[1234], width=6, fill="c") Out[9]: <tf.Tensor: shape=(1,), dtype=string, numpy=array(['\xd26d'], dtype=object)> In [10]: tf.strings.as_string(input=[1234], width=6, fill="p") Out[10]: <tf.Tensor: shape=(1,), dtype=string, numpy=array(['0x4d26d'], dtype=object)> In [11]: tf.strings.as_string(input=[1234], width=6, fill='m') Out[11]: <tf.Tensor: shape=(1,), dtype=string, numpy=array(['Success6d'], dtype=object)> ``` However, passing in `n` or `s` results in segmentation fault. ### Patches We have patched the issue in 33be22c65d86256e6826666662e40dbdfe70ee83 and will release patch releases for all versions between 1.15 and 2.3. We recommend users to upgrade to TensorFlow 1.15.4, 2.0.3, 2.1.2, 2.2.1, or 2.3.1. ### For more information Please consult [our security guide](https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md) for more information regarding the security model and how to contact us with issues and questions. ### Attribution This vulnerability has been reported by members of the Aivul Team from Qihoo 360.

Credit: security-advisories@github.com security-advisories@github.com

Affected SoftwareAffected VersionHow to fix
pip/tensorflow-gpu=2.3.0
2.3.1
pip/tensorflow-gpu=2.2.0
2.2.1
pip/tensorflow-gpu>=2.1.0<2.1.2
2.1.2
pip/tensorflow-gpu>=2.0.0<2.0.3
2.0.3
pip/tensorflow-gpu<1.15.4
1.15.4
pip/tensorflow-cpu=2.3.0
2.3.1
pip/tensorflow-cpu=2.2.0
2.2.1
pip/tensorflow-cpu>=2.1.0<2.1.2
2.1.2
pip/tensorflow-cpu>=2.0.0<2.0.3
2.0.3
pip/tensorflow-cpu<1.15.4
1.15.4
pip/tensorflow=2.3.0
2.3.1
pip/tensorflow=2.2.0
2.2.1
pip/tensorflow>=2.1.0<2.1.2
2.1.2
pip/tensorflow>=2.0.0<2.0.3
2.0.3
pip/tensorflow<1.15.4
1.15.4
TensorFlow Keras<1.15.4
TensorFlow Keras>=2.0.0<2.0.3
TensorFlow Keras>=2.1.0<2.1.2
TensorFlow Keras>=2.2.0<2.2.1
TensorFlow Keras>=2.3.0<2.3.1
SUSE Linux=15.2

Never miss a vulnerability like this again

Sign up to SecAlerts for real-time vulnerability data matched to your software, aggregated from hundreds of sources.

Frequently Asked Questions

  • What is the severity of CVE-2020-15203?

    The severity of CVE-2020-15203 is classified as high due to its potential to allow arbitrary code execution through a format string vulnerability.

  • How do I fix CVE-2020-15203?

    To fix CVE-2020-15203, upgrade to TensorFlow version 2.3.1 or later, or other specified safe versions depending on your current version.

  • Which versions of TensorFlow are affected by CVE-2020-15203?

    CVE-2020-15203 affects TensorFlow versions 2.3.0, 2.2.0, 2.1.0, 2.0.0, and 1.15.4.

  • What is a format string vulnerability as it pertains to CVE-2020-15203?

    A format string vulnerability in CVE-2020-15203 allows attackers to manipulate the input to functions like printf, potentially leading to code execution.

  • Is CVE-2020-15203 specific to TensorFlow CPU or GPU versions?

    CVE-2020-15203 affects both TensorFlow CPU and GPU versions, meaning users of either can be vulnerable.

Contact

SecAlerts Pty Ltd.
132 Wickham Terrace
Fortitude Valley,
QLD 4006, Australia
info@secalerts.co
By using SecAlerts services, you agree to our services end-user license agreement. This website is safeguarded by reCAPTCHA and governed by the Google Privacy Policy and Terms of Service. All names, logos, and brands of products are owned by their respective owners, and any usage of these names, logos, and brands for identification purposes only does not imply endorsement. If you possess any content that requires removal, please get in touch with us.
© 2025 SecAlerts Pty Ltd.
ABN: 70 645 966 203, ACN: 645 966 203