7.8
CWE
125
Advisory Published
CVE Published
Updated

CVE-2020-26267: Lack of validation in data format attributes in TensorFlow

First published: Thu Dec 10 2020(Updated: )

### Impact The `tf.raw_ops.DataFormatVecPermute` API does not validate the `src_format` and `dst_format` attributes. [The code](https://github.com/tensorflow/tensorflow/blob/304b96815324e6a73d046df10df6626d63ac12ad/tensorflow/core/kernels/data_format_ops.cc) assumes that these two arguments define a permutation of `NHWC`. However, these assumptions are not checked and this can result in uninitialized memory accesses, read outside of bounds and even crashes. ```python >>> import tensorflow as tf >>> tf.raw_ops.DataFormatVecPermute(x=[1,4], src_format='1234', dst_format='1234') <tf.Tensor: shape=(2,), dtype=int32, numpy=array([4, 757100143], dtype=int32)> ... >>> tf.raw_ops.DataFormatVecPermute(x=[1,4], src_format='HHHH', dst_format='WWWW') <tf.Tensor: shape=(2,), dtype=int32, numpy=array([4, 32701], dtype=int32)> ... >>> tf.raw_ops.DataFormatVecPermute(x=[1,4], src_format='H', dst_format='W') <tf.Tensor: shape=(2,), dtype=int32, numpy=array([4, 32701], dtype=int32)> >>> tf.raw_ops.DataFormatVecPermute(x=[1,2,3,4], src_format='1234', dst_format='1253') <tf.Tensor: shape=(4,), dtype=int32, numpy=array([4, 2, 939037184, 3], dtype=int32)> ... >>> tf.raw_ops.DataFormatVecPermute(x=[1,2,3,4], src_format='1234', dst_format='1223') <tf.Tensor: shape=(4,), dtype=int32, numpy=array([4, 32701, 2, 3], dtype=int32)> ... >>> tf.raw_ops.DataFormatVecPermute(x=[1,2,3,4], src_format='1224', dst_format='1423') <tf.Tensor: shape=(4,), dtype=int32, numpy=array([1, 4, 3, 32701], dtype=int32)> ... >>> tf.raw_ops.DataFormatVecPermute(x=[1,2,3,4], src_format='1234', dst_format='432') <tf.Tensor: shape=(4,), dtype=int32, numpy=array([4, 3, 2, 32701], dtype=int32)> ... >>> tf.raw_ops.DataFormatVecPermute(x=[1,2,3,4], src_format='12345678', dst_format='87654321') munmap_chunk(): invalid pointer Aborted ... >>> tf.raw_ops.DataFormatVecPermute(x=[[1,5],[2,6],[3,7],[4,8]], src_format='12345678', dst_format='87654321') <tf.Tensor: shape=(4, 2), dtype=int32, numpy= array([[71364624, 0], [71365824, 0], [ 560, 0], [ 48, 0]], dtype=int32)> ... >>> tf.raw_ops.DataFormatVecPermute(x=[[1,5],[2,6],[3,7],[4,8]], src_format='12345678', dst_format='87654321') free(): invalid next size (fast) Aborted ``` A similar issue occurs in `tf.raw_ops.DataFormatDimMap`, for the same reasons: ```python >>> tf.raw_ops.DataFormatDimMap(x=[[1,5],[2,6],[3,7],[4,8]], src_format='1234', >>> dst_format='8765') <tf.Tensor: shape=(4, 2), dtype=int32, numpy= array([[1954047348, 1954047348], [1852793646, 1852793646], [1954047348, 1954047348], [1852793632, 1852793632]], dtype=int32)> ``` ### Patches We have patched the issue in GitHub commit [ebc70b7a592420d3d2f359e4b1694c236b82c7ae](https://github.com/tensorflow/tensorflow/commit/ebc70b7a592420d3d2f359e4b1694c236b82c7ae) and will release TensorFlow 2.4.0 containing the patch. TensorFlow nightly packages after this commit will also have the issue resolved. Since this issue also impacts TF versions before 2.4, we will patch all releases between 1.15 and 2.3 inclusive. ### For more information Please consult [our security guide](https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md) for more information regarding the security model and how to contact us with issues and questions. ### Attribution This vulnerability has been reported by members of the Aivul Team from Qihoo 360.

Credit: security-advisories@github.com security-advisories@github.com

Affected SoftwareAffected VersionHow to fix
Google TensorFlow<1.15.5
Google TensorFlow>=2.0.0<2.0.4
Google TensorFlow>=2.1.0<2.1.3
Google TensorFlow>=2.2.0<2.2.2
Google TensorFlow>=2.3.0<2.3.2
pip/tensorflow-gpu>=2.3.0<2.3.2
2.3.2
pip/tensorflow-gpu>=2.2.0<2.2.2
2.2.2
pip/tensorflow-gpu>=2.1.0<2.1.3
2.1.3
pip/tensorflow-gpu>=2.0.0<2.0.4
2.0.4
pip/tensorflow-gpu<1.15.5
1.15.5
pip/tensorflow-cpu>=2.3.0<2.3.2
2.3.2
pip/tensorflow-cpu>=2.2.0<2.2.2
2.2.2
pip/tensorflow-cpu>=2.1.0<2.1.3
2.1.3
pip/tensorflow-cpu>=2.0.0<2.0.4
2.0.4
pip/tensorflow-cpu<1.15.5
1.15.5
pip/tensorflow>=2.3.0<2.3.2
2.3.2
pip/tensorflow>=2.2.0<2.2.2
2.2.2
pip/tensorflow>=2.1.0<2.1.3
2.1.3
pip/tensorflow>=2.0.0<2.0.4
2.0.4
pip/tensorflow<1.15.5
1.15.5
<1.15.5
>=2.0.0<2.0.4
>=2.1.0<2.1.3
>=2.2.0<2.2.2
>=2.3.0<2.3.2

Never miss a vulnerability like this again

Sign up to SecAlerts for real-time vulnerability data matched to your software, aggregated from hundreds of sources.

Contact

SecAlerts Pty Ltd.
132 Wickham Terrace
Fortitude Valley,
QLD 4006, Australia
info@secalerts.co
By using SecAlerts services, you agree to our services end-user license agreement. This website is safeguarded by reCAPTCHA and governed by the Google Privacy Policy and Terms of Service. All names, logos, and brands of products are owned by their respective owners, and any usage of these names, logos, and brands for identification purposes only does not imply endorsement. If you possess any content that requires removal, please get in touch with us.
© 2024 SecAlerts Pty Ltd.
ABN: 70 645 966 203, ACN: 645 966 203