First published: Fri May 14 2021(Updated: )
### Impact Specifying a negative dense shape in `tf.raw_ops.SparseCountSparseOutput` results in a segmentation fault being thrown out from the standard library as `std::vector` invariants are broken. ```python import tensorflow as tf indices = tf.constant([], shape=[0, 0], dtype=tf.int64) values = tf.constant([], shape=[0, 0], dtype=tf.int64) dense_shape = tf.constant([-100, -100, -100], shape=[3], dtype=tf.int64) weights = tf.constant([], shape=[0, 0], dtype=tf.int64) tf.raw_ops.SparseCountSparseOutput(indices=indices, values=values, dense_shape=dense_shape, weights=weights, minlength=79, maxlength=96, binary_output=False) ``` This is because the [implementation](https://github.com/tensorflow/tensorflow/blob/8f7b60ee8c0206a2c99802e3a4d1bb55d2bc0624/tensorflow/core/kernels/count_ops.cc#L199-L213) assumes the first element of the dense shape is always positive and uses it to initialize a `BatchedMap<T>` (i.e., [`std::vector<absl::flat_hash_map<int64,T>>`](https://github.com/tensorflow/tensorflow/blob/8f7b60ee8c0206a2c99802e3a4d1bb55d2bc0624/tensorflow/core/kernels/count_ops.cc#L27)) data structure. ```cc bool is_1d = shape.NumElements() == 1; int num_batches = is_1d ? 1 : shape.flat<int64>()(0); ... auto per_batch_counts = BatchedMap<W>(num_batches); ``` If the `shape` tensor has more than one element, `num_batches` is the first value in `shape`. Ensuring that the `dense_shape` argument is a valid tensor shape (that is, all elements are non-negative) solves this issue. ### Patches We have patched the issue in GitHub commit [c57c0b9f3a4f8684f3489dd9a9ec627ad8b599f5](https://github.com/tensorflow/tensorflow/commit/c57c0b9f3a4f8684f3489dd9a9ec627ad8b599f5). The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2 and TensorFlow 2.3.3. ### For more information Please consult [our security guide](https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md) for more information regarding the security model and how to contact us with issues and questions. ### Attribution This vulnerability has been reported by Yakun Zhang and Ying Wang of Baidu X-Team.
Credit: security-advisories@github.com security-advisories@github.com
Affected Software | Affected Version | How to fix |
---|---|---|
Google TensorFlow | >=2.3.0<2.3.3 | |
Google TensorFlow | >=2.4.0<2.4.2 | |
pip/tensorflow-gpu | >=2.4.0<2.4.2 | 2.4.2 |
pip/tensorflow-gpu | >=2.3.0<2.3.3 | 2.3.3 |
pip/tensorflow-cpu | >=2.4.0<2.4.2 | 2.4.2 |
pip/tensorflow-cpu | >=2.3.0<2.3.3 | 2.3.3 |
pip/tensorflow | >=2.4.0<2.4.2 | 2.4.2 |
pip/tensorflow | >=2.3.0<2.3.3 | 2.3.3 |
Sign up to SecAlerts for real-time vulnerability data matched to your software, aggregated from hundreds of sources.