7.8
CWE
787 131 119
Advisory Published
Advisory Published
Updated

CVE-2021-29536: Heap buffer overflow in `QuantizedReshape`

First published: Fri May 14 2021(Updated: )

### Impact An attacker can cause a heap buffer overflow in `QuantizedReshape` by passing in invalid thresholds for the quantization: ```python import tensorflow as tf tensor = tf.constant([], dtype=tf.qint32) shape = tf.constant([], dtype=tf.int32) input_min = tf.constant([], dtype=tf.float32) input_max = tf.constant([], dtype=tf.float32) tf.raw_ops.QuantizedReshape(tensor=tensor, shape=shape, input_min=input_min, input_max=input_max) ``` This is because the [implementation](https://github.com/tensorflow/tensorflow/blob/a324ac84e573fba362a5e53d4e74d5de6729933e/tensorflow/core/kernels/quantized_reshape_op.cc#L38-L55) assumes that the 2 arguments are always valid scalars and tries to access the numeric value directly: ```cc const auto& input_min_float_tensor = ctx->input(2); ... const float input_min_float = input_min_float_tensor.flat<float>()(0); const auto& input_max_float_tensor = ctx->input(3); ... const float input_max_float = input_max_float_tensor.flat<float>()(0); ``` However, if any of these tensors is empty, then `.flat<T>()` is an empty buffer and accessing the element at position 0 results in overflow. ### Patches We have patched the issue in GitHub commit [a324ac84e573fba362a5e53d4e74d5de6729933e](https://github.com/tensorflow/tensorflow/commit/a324ac84e573fba362a5e53d4e74d5de6729933e). The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range. ### For more information Please consult [our security guide](https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md) for more information regarding the security model and how to contact us with issues and questions. ### Attribution This vulnerability has been reported by Ying Wang and Yakun Zhang of Baidu X-Team.

Credit: security-advisories@github.com security-advisories@github.com

Affected SoftwareAffected VersionHow to fix
Google TensorFlow<2.1.4
Google TensorFlow>=2.2.0<2.2.3
Google TensorFlow>=2.3.0<2.3.3
Google TensorFlow>=2.4.0<2.4.2
pip/tensorflow-gpu>=2.4.0<2.4.2
2.4.2
pip/tensorflow-gpu>=2.3.0<2.3.3
2.3.3
pip/tensorflow-gpu>=2.2.0<2.2.3
2.2.3
pip/tensorflow-gpu<2.1.4
2.1.4
pip/tensorflow-cpu>=2.4.0<2.4.2
2.4.2
pip/tensorflow-cpu>=2.3.0<2.3.3
2.3.3
pip/tensorflow-cpu>=2.2.0<2.2.3
2.2.3
pip/tensorflow-cpu<2.1.4
2.1.4
pip/tensorflow>=2.4.0<2.4.2
2.4.2
pip/tensorflow>=2.3.0<2.3.3
2.3.3
pip/tensorflow>=2.2.0<2.2.3
2.2.3
pip/tensorflow<2.1.4
2.1.4

Never miss a vulnerability like this again

Sign up to SecAlerts for real-time vulnerability data matched to your software, aggregated from hundreds of sources.

Contact

SecAlerts Pty Ltd.
132 Wickham Terrace
Fortitude Valley,
QLD 4006, Australia
info@secalerts.co
By using SecAlerts services, you agree to our services end-user license agreement. This website is safeguarded by reCAPTCHA and governed by the Google Privacy Policy and Terms of Service. All names, logos, and brands of products are owned by their respective owners, and any usage of these names, logos, and brands for identification purposes only does not imply endorsement. If you possess any content that requires removal, please get in touch with us.
© 2024 SecAlerts Pty Ltd.
ABN: 70 645 966 203, ACN: 645 966 203