7.8
CWE
369
Advisory Published
Advisory Published
Updated

CVE-2021-29546: Division by 0 in `QuantizedBiasAdd`

First published: Fri May 14 2021(Updated: )

### Impact An attacker can trigger an integer division by zero undefined behavior in `tf.raw_ops.QuantizedBiasAdd`: ```python import tensorflow as tf input_tensor = tf.constant([], shape=[0, 0, 0, 0], dtype=tf.quint8) bias = tf.constant([], shape=[0], dtype=tf.quint8) min_input = tf.constant(-10.0, dtype=tf.float32) max_input = tf.constant(-10.0, dtype=tf.float32) min_bias = tf.constant(-10.0, dtype=tf.float32) max_bias = tf.constant(-10.0, dtype=tf.float32) tf.raw_ops.QuantizedBiasAdd(input=input_tensor, bias=bias, min_input=min_input, max_input=max_input, min_bias=min_bias, max_bias=max_bias, out_type=tf.qint32) ``` This is because the [implementation of the Eigen kernel](https://github.com/tensorflow/tensorflow/blob/61bca8bd5ba8a68b2d97435ddfafcdf2b85672cd/tensorflow/core/kernels/quantization_utils.h#L812-L849) does a division by the number of elements of the smaller input (based on shape) without checking that this is not zero: ```cc template <typename T1, typename T2, typename T3> void QuantizedAddUsingEigen(const Eigen::ThreadPoolDevice& device, const Tensor& input, float input_min, float input_max, const Tensor& smaller_input, float smaller_input_min, float smaller_input_max, Tensor* output, float* output_min, float* output_max) { ... const int64 input_element_count = input.NumElements(); const int64 smaller_input_element_count = smaller_input.NumElements(); ... bcast[0] = input_element_count / smaller_input_element_count; ... } ``` This integral division by 0 is undefined behavior. ### Patches We have patched the issue in GitHub commit [67784700869470d65d5f2ef20aeb5e97c31673cb](https://github.com/tensorflow/tensorflow/commit/67784700869470d65d5f2ef20aeb5e97c31673cb). The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range. ### For more information Please consult [our security guide](https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md) for more information regarding the security model and how to contact us with issues and questions. ### Attribution This vulnerability has been reported by Yakun Zhang and Ying Wang of Baidu X-Team.

Credit: security-advisories@github.com security-advisories@github.com

Affected SoftwareAffected VersionHow to fix
Google TensorFlow<2.1.4
Google TensorFlow>=2.2.0<2.2.3
Google TensorFlow>=2.3.0<2.3.3
Google TensorFlow>=2.4.0<2.4.2
pip/tensorflow-gpu>=2.4.0<2.4.2
2.4.2
pip/tensorflow-gpu>=2.3.0<2.3.3
2.3.3
pip/tensorflow-gpu>=2.2.0<2.2.3
2.2.3
pip/tensorflow-gpu<2.1.4
2.1.4
pip/tensorflow-cpu>=2.4.0<2.4.2
2.4.2
pip/tensorflow-cpu>=2.3.0<2.3.3
2.3.3
pip/tensorflow-cpu>=2.2.0<2.2.3
2.2.3
pip/tensorflow-cpu<2.1.4
2.1.4
pip/tensorflow>=2.4.0<2.4.2
2.4.2
pip/tensorflow>=2.3.0<2.3.3
2.3.3
pip/tensorflow>=2.2.0<2.2.3
2.2.3
pip/tensorflow<2.1.4
2.1.4

Never miss a vulnerability like this again

Sign up to SecAlerts for real-time vulnerability data matched to your software, aggregated from hundreds of sources.

Contact

SecAlerts Pty Ltd.
132 Wickham Terrace
Fortitude Valley,
QLD 4006, Australia
info@secalerts.co
By using SecAlerts services, you agree to our services end-user license agreement. This website is safeguarded by reCAPTCHA and governed by the Google Privacy Policy and Terms of Service. All names, logos, and brands of products are owned by their respective owners, and any usage of these names, logos, and brands for identification purposes only does not imply endorsement. If you possess any content that requires removal, please get in touch with us.
© 2024 SecAlerts Pty Ltd.
ABN: 70 645 966 203, ACN: 645 966 203