First published: Fri May 14 2021(Updated: )
### Impact The implementation of the `DepthToSpace` TFLite operator is [vulnerable to a division by zero error](https://github.com/tensorflow/tensorflow/blob/0d45ea1ca641b21b73bcf9c00e0179cda284e7e7/tensorflow/lite/kernels/depth_to_space.cc#L63-L69): ```cc const int block_size = params->block_size; ... const int input_channels = input->dims->data[3]; ... int output_channels = input_channels / block_size / block_size; ``` An attacker can craft a model such that `params->block_size` is 0. ### Patches We have patched the issue in GitHub commit [106d8f4fb89335a2c52d7c895b7a7485465ca8d9](https://github.com/tensorflow/tensorflow/commit/106d8f4fb89335a2c52d7c895b7a7485465ca8d9). The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range. ### For more information Please consult [our security guide](https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md) for more information regarding the security model and how to contact us with issues and questions. ### Attribution This vulnerability has been reported by members of the Aivul Team from Qihoo 360.
Credit: security-advisories@github.com security-advisories@github.com
Affected Software | Affected Version | How to fix |
---|---|---|
pip/tensorflow-gpu | >=2.4.0<2.4.2 | 2.4.2 |
pip/tensorflow-gpu | >=2.3.0<2.3.3 | 2.3.3 |
pip/tensorflow-gpu | >=2.2.0<2.2.3 | 2.2.3 |
pip/tensorflow-gpu | <2.1.4 | 2.1.4 |
pip/tensorflow-cpu | >=2.4.0<2.4.2 | 2.4.2 |
pip/tensorflow-cpu | >=2.3.0<2.3.3 | 2.3.3 |
pip/tensorflow-cpu | >=2.2.0<2.2.3 | 2.2.3 |
pip/tensorflow-cpu | <2.1.4 | 2.1.4 |
pip/tensorflow | >=2.4.0<2.4.2 | 2.4.2 |
pip/tensorflow | >=2.3.0<2.3.3 | 2.3.3 |
pip/tensorflow | >=2.2.0<2.2.3 | 2.2.3 |
pip/tensorflow | <2.1.4 | 2.1.4 |
TensorFlow Keras | <2.1.4 | |
TensorFlow Keras | >=2.2.0<2.2.3 | |
TensorFlow Keras | >=2.3.0<2.3.3 | |
TensorFlow Keras | >=2.4.0<2.4.2 |
Sign up to SecAlerts for real-time vulnerability data matched to your software, aggregated from hundreds of sources.
CVE-2021-29595 has a severity rating of Medium due to its potential for causing a division by zero error.
You can address CVE-2021-29595 by upgrading TensorFlow to version 2.4.2 or higher.
CVE-2021-29595 affects TensorFlow versions prior to 2.1.4, and between 2.2.0 and 2.2.3, 2.3.0 and 2.3.3, and 2.4.0 and 2.4.2.
Yes, CVE-2021-29595 affects both TensorFlow CPU and GPU installations.
Developers should review their applications for dependencies on vulnerable TensorFlow versions and consider upgrading.