First published: Fri May 14 2021(Updated: )
### Impact An attacker can trigger a heap buffer overflow in Eigen implementation of `tf.raw_ops.BandedTriangularSolve`: ```python import tensorflow as tf import numpy as np matrix_array = np.array([]) matrix_tensor = tf.convert_to_tensor(np.reshape(matrix_array,(0,1)),dtype=tf.float32) rhs_array = np.array([1,1]) rhs_tensor = tf.convert_to_tensor(np.reshape(rhs_array,(1,2)),dtype=tf.float32) tf.raw_ops.BandedTriangularSolve(matrix=matrix_tensor,rhs=rhs_tensor) ``` The [implementation](https://github.com/tensorflow/tensorflow/blob/eccb7ec454e6617738554a255d77f08e60ee0808/tensorflow/core/kernels/linalg/banded_triangular_solve_op.cc#L269-L278) calls `ValidateInputTensors` for input validation but fails to validate that the two tensors are not empty: ```cc void ValidateInputTensors(OpKernelContext* ctx, const Tensor& in0, const Tensor& in1) { OP_REQUIRES( ctx, in0.dims() >= 2, errors::InvalidArgument("In[0] ndims must be >= 2: ", in0.dims())); OP_REQUIRES( ctx, in1.dims() >= 2, errors::InvalidArgument("In[1] ndims must be >= 2: ", in1.dims())); } ``` Furthermore, since `OP_REQUIRES` macro only stops execution of current function after setting `ctx->status()` to a non-OK value, callers of helper functions that use `OP_REQUIRES` must check value of `ctx->status()` before continuing. This doesn't happen [in this op's implementation](https://github.com/tensorflow/tensorflow/blob/eccb7ec454e6617738554a255d77f08e60ee0808/tensorflow/core/kernels/linalg/banded_triangular_solve_op.cc#L219), hence the validation that is present is also not effective. ### Patches We have patched the issue in GitHub commit [ba6822bd7b7324ba201a28b2f278c29a98edbef2](https://github.com/tensorflow/tensorflow/commit/ba6822bd7b7324ba201a28b2f278c29a98edbef2) followed by GitHub commit [0ab290774f91a23bebe30a358fde4e53ab4876a0](https://github.com/tensorflow/tensorflow/commit/0ab290774f91a23bebe30a358fde4e53ab4876a0). The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range. ### For more information Please consult [our security guide](https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md) for more information regarding the security model and how to contact us with issues and questions. ### Attribution This vulnerability has been reported by Ye Zhang and Yakun Zhang of Baidu X-Team.
Credit: security-advisories@github.com security-advisories@github.com
Affected Software | Affected Version | How to fix |
---|---|---|
Google TensorFlow | <2.1.4 | |
Google TensorFlow | >=2.2.0<2.2.3 | |
Google TensorFlow | >=2.3.0<2.3.3 | |
Google TensorFlow | >=2.4.0<2.4.2 | |
pip/tensorflow-gpu | >=2.4.0<2.4.2 | 2.4.2 |
pip/tensorflow-gpu | >=2.3.0<2.3.3 | 2.3.3 |
pip/tensorflow-gpu | >=2.2.0<2.2.3 | 2.2.3 |
pip/tensorflow-gpu | <2.1.4 | 2.1.4 |
pip/tensorflow-cpu | >=2.4.0<2.4.2 | 2.4.2 |
pip/tensorflow-cpu | >=2.3.0<2.3.3 | 2.3.3 |
pip/tensorflow-cpu | >=2.2.0<2.2.3 | 2.2.3 |
pip/tensorflow-cpu | <2.1.4 | 2.1.4 |
pip/tensorflow | >=2.4.0<2.4.2 | 2.4.2 |
pip/tensorflow | >=2.3.0<2.3.3 | 2.3.3 |
pip/tensorflow | >=2.2.0<2.2.3 | 2.2.3 |
pip/tensorflow | <2.1.4 | 2.1.4 |
Sign up to SecAlerts for real-time vulnerability data matched to your software, aggregated from hundreds of sources.