7.8
CWE
681 125
Advisory Published
Advisory Published
Updated

CVE-2021-37679: Heap OOB in nested `tf.map_fn` with `RaggedTensor`s in TensorFlow

First published: Thu Aug 12 2021(Updated: )

### Impact It is possible to nest a `tf.map_fn` within another `tf.map_fn` call. However, if the input tensor is a `RaggedTensor` and there is no function signature provided, code assumes the output is a fully specified tensor and fills output buffer with uninitialized contents from the heap: ```python import tensorflow as tf x = tf.ragged.constant([[1,2,3], [4,5], [6]]) t = tf.map_fn(lambda r: tf.map_fn(lambda y: r, r), x) z = tf.ragged.constant([[[1,2,3],[1,2,3],[1,2,3]],[[4,5],[4,5]],[[6]]]) ``` The `t` and `z` outputs should be identical, however this is not the case. The last row of `t` contains data from the heap which can be used to leak other memory information. The bug lies in the conversion from a `Variant` tensor to a `RaggedTensor`. The [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/kernels/ragged_tensor_from_variant_op.cc#L177-L190) does not check that all inner shapes match and this results in the additional dimensions in the above example. The same implementation can result in data loss, if input tensor is tweaked: ```python import tensorflow as tf x = tf.ragged.constant([[1,2], [3,4,5], [6]]) t = tf.map_fn(lambda r: tf.map_fn(lambda y: r, r), x) ``` Here, the output tensor will only have 2 elements for each inner dimension. ### Patches We have patched the issue in GitHub commit [4e2565483d0ffcadc719bd44893fb7f609bb5f12](https://github.com/tensorflow/tensorflow/commit/4e2565483d0ffcadc719bd44893fb7f609bb5f12). The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range. ### For more information Please consult [our security guide](https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md) for more information regarding the security model and how to contact us with issues and questions. ### Attribution This vulnerability has been reported by Haris Sahovic.

Credit: security-advisories@github.com security-advisories@github.com

Affected SoftwareAffected VersionHow to fix
Google TensorFlow>=2.3.0<2.3.4
Google TensorFlow>=2.4.0<2.4.3
Google TensorFlow=2.5.0
Google TensorFlow=2.6.0-rc0
Google TensorFlow=2.6.0-rc1
Google TensorFlow=2.6.0-rc2
pip/tensorflow-gpu=2.5.0
2.5.1
pip/tensorflow-gpu>=2.4.0<2.4.3
2.4.3
pip/tensorflow-gpu<2.3.4
2.3.4
pip/tensorflow-cpu=2.5.0
2.5.1
pip/tensorflow-cpu>=2.4.0<2.4.3
2.4.3
pip/tensorflow-cpu<2.3.4
2.3.4
pip/tensorflow=2.5.0
2.5.1
pip/tensorflow>=2.4.0<2.4.3
2.4.3
pip/tensorflow<2.3.4
2.3.4

Never miss a vulnerability like this again

Sign up to SecAlerts for real-time vulnerability data matched to your software, aggregated from hundreds of sources.

Contact

SecAlerts Pty Ltd.
132 Wickham Terrace
Fortitude Valley,
QLD 4006, Australia
info@secalerts.co
By using SecAlerts services, you agree to our services end-user license agreement. This website is safeguarded by reCAPTCHA and governed by the Google Privacy Policy and Terms of Service. All names, logos, and brands of products are owned by their respective owners, and any usage of these names, logos, and brands for identification purposes only does not imply endorsement. If you possess any content that requires removal, please get in touch with us.
© 2024 SecAlerts Pty Ltd.
ABN: 70 645 966 203, ACN: 645 966 203