First published: Thu Feb 03 2022(Updated: )
### Impact The [implementation of shape inference for `ReverseSequence`](https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/ops/array_ops.cc#L1636-L1671) does not fully validate the value of `batch_dim` and can result in a heap OOB read: ```python import tensorflow as tf @tf.function def test(): y = tf.raw_ops.ReverseSequence( input = ['aaa','bbb'], seq_lengths = [1,1,1], seq_dim = -10, batch_dim = -10 ) return y test() ``` There is a check to make sure the value of `batch_dim` does not go over the rank of the input, but there is no check for negative values: ```cc const int32_t input_rank = c->Rank(input); if (batch_dim >= input_rank) { return errors::InvalidArgument( "batch_dim must be < input rank: ", batch_dim, " vs. ", input_rank); } // ... DimensionHandle batch_dim_dim = c->Dim(input, batch_dim); ``` Negative dimensions are allowed in some cases to mimic Python's negative indexing (i.e., indexing from the end of the array), however if the value is too negative then [the implementation of `Dim`](https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/framework/shape_inference.h#L415-L428) would access elements before the start of an array: ```cc DimensionHandle Dim(ShapeHandle s, int64_t idx) { if (!s.Handle() || s->rank_ == kUnknownRank) { return UnknownDim(); } return DimKnownRank(s, idx); } · static DimensionHandle DimKnownRank(ShapeHandle s, int64_t idx) { CHECK_NE(s->rank_, kUnknownRank); if (idx < 0) { return s->dims_[s->dims_.size() + idx]; } return s->dims_[idx]; } ``` ### Patches We have patched the issue in GitHub commit [37c01fb5e25c3d80213060460196406c43d31995](https://github.com/tensorflow/tensorflow/commit/37c01fb5e25c3d80213060460196406c43d31995). The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range. ### For more information Please consult [our security guide](https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md) for more information regarding the security model and how to contact us with issues and questions. ### Attribution This vulnerability has been reported by Yu Tian of Qihoo 360 AIVul Team.
Credit: security-advisories@github.com security-advisories@github.com
Affected Software | Affected Version | How to fix |
---|---|---|
Google TensorFlow | <=2.5.2 | |
Google TensorFlow | >=2.6.0<=2.6.2 | |
Google TensorFlow | =2.7.0 | |
pip/tensorflow-gpu | =2.7.0 | 2.7.1 |
pip/tensorflow-gpu | >=2.6.0<2.6.3 | 2.6.3 |
pip/tensorflow-gpu | <2.5.3 | 2.5.3 |
pip/tensorflow-cpu | =2.7.0 | 2.7.1 |
pip/tensorflow-cpu | >=2.6.0<2.6.3 | 2.6.3 |
pip/tensorflow-cpu | <2.5.3 | 2.5.3 |
pip/tensorflow | =2.7.0 | 2.7.1 |
pip/tensorflow | >=2.6.0<2.6.3 | 2.6.3 |
pip/tensorflow | <2.5.3 | 2.5.3 |
Sign up to SecAlerts for real-time vulnerability data matched to your software, aggregated from hundreds of sources.