First published: Thu Feb 03 2022(Updated: )
### Impact The [implementation of `ThreadPoolHandle`](https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/kernels/data/experimental/threadpool_dataset_op.cc#L79-L135) can be used to trigger a denial of service attack by allocating too much memory: ```python import tensorflow as tf y = tf.raw_ops.ThreadPoolHandle(num_threads=0x60000000,display_name='tf') ``` This is because the `num_threads` argument is only checked to not be negative, but there is no upper bound on its value. ### Patches We have patched the issue in GitHub commit [e3749a6d5d1e8d11806d4a2e9cc3123d1a90b75e](https://github.com/tensorflow/tensorflow/commit/e3749a6d5d1e8d11806d4a2e9cc3123d1a90b75e). The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range. ### For more information Please consult [our security guide](https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md) for more information regarding the security model and how to contact us with issues and questions. ### Attribution This vulnerability has been reported by Yu Tian of Qihoo 360 AIVul Team.
Credit: security-advisories@github.com security-advisories@github.com
Affected Software | Affected Version | How to fix |
---|---|---|
Google TensorFlow | <=2.5.2 | |
Google TensorFlow | >=2.6.0<=2.6.2 | |
Google TensorFlow | =2.7.0 | |
pip/tensorflow-gpu | =2.7.0 | 2.7.1 |
pip/tensorflow-gpu | >=2.6.0<2.6.3 | 2.6.3 |
pip/tensorflow-gpu | <2.5.3 | 2.5.3 |
pip/tensorflow-cpu | =2.7.0 | 2.7.1 |
pip/tensorflow-cpu | >=2.6.0<2.6.3 | 2.6.3 |
pip/tensorflow-cpu | <2.5.3 | 2.5.3 |
pip/tensorflow | =2.7.0 | 2.7.1 |
pip/tensorflow | >=2.6.0<2.6.3 | 2.6.3 |
pip/tensorflow | <2.5.3 | 2.5.3 |
Sign up to SecAlerts for real-time vulnerability data matched to your software, aggregated from hundreds of sources.
CVE-2022-21732 has been classified as a denial of service vulnerability.
To fix CVE-2022-21732, upgrade to TensorFlow version 2.7.1 or above.
CVE-2022-21732 affects TensorFlow versions up to 2.7.0 and between 2.6.0 and 2.6.2.
CVE-2022-21732 can be exploited to execute a denial of service attack by allocating excessive resources.
Detailed information regarding CVE-2022-21732 can be obtained from the TensorFlow GitHub repository and security advisories.