First published: Fri Feb 04 2022(Updated: )
### Impact An attacker can craft a TFLite model that would cause a write outside of bounds of an array in TFLite. In fact, the attacker can override the linked list used by the memory allocator. This can be leveraged for an arbitrary write primitive under certain conditions. ### Patches We have patched the issue in GitHub commit [6c0b2b70eeee588591680f5b7d5d38175fd7cdf6](https://github.com/tensorflow/tensorflow/commit/6c0b2b70eeee588591680f5b7d5d38175fd7cdf6). The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range. ### For more information Please consult [our security guide](https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md) for more information regarding the security model and how to contact us with issues and questions. ### Attribution This vulnerability has been reported by Wang Xuan of Qihoo 360 AIVul Team.
Credit: security-advisories@github.com security-advisories@github.com
Affected Software | Affected Version | How to fix |
---|---|---|
pip/tensorflow-gpu | =2.7.0 | 2.7.1 |
pip/tensorflow-gpu | >=2.6.0<2.6.3 | 2.6.3 |
pip/tensorflow-gpu | <2.5.3 | 2.5.3 |
pip/tensorflow-cpu | =2.7.0 | 2.7.1 |
pip/tensorflow-cpu | >=2.6.0<2.6.3 | 2.6.3 |
pip/tensorflow-cpu | <2.5.3 | 2.5.3 |
pip/tensorflow | =2.7.0 | 2.7.1 |
pip/tensorflow | >=2.6.0<2.6.3 | 2.6.3 |
pip/tensorflow | <2.5.3 | 2.5.3 |
TensorFlow Keras | <=2.5.2 | |
TensorFlow Keras | >=2.6.0<=2.6.2 | |
TensorFlow Keras | =2.7.0 |
Sign up to SecAlerts for real-time vulnerability data matched to your software, aggregated from hundreds of sources.
CVE-2022-23561 is classified as a high severity vulnerability due to its potential for arbitrary writes.
To fix CVE-2022-23561, upgrade to TensorFlow version 2.7.1 or later.
CVE-2022-23561 affects TensorFlow versions up to 2.5.2, 2.6.0 to 2.6.2, and 2.7.0.
CVE-2022-23561 is a write outside of bounds vulnerability specific to TFLite models.
Yes, CVE-2022-23561 can potentially be exploited remotely if an attacker crafts a malicious TFLite model.