CWE
420 636 755
Advisory Published
Updated

CVE-2023-28842: moby/moby's dockerd daemon encrypted overlay network with a single endpoint is unauthenticated

First published: Tue Apr 04 2023(Updated: )

Moby) is an open source container framework developed by Docker Inc. that is distributed as Docker, Mirantis Container Runtime, and various other downstream projects/products. The Moby daemon component (`dockerd`), which is developed as moby/moby is commonly referred to as *Docker*. Swarm Mode, which is compiled in and delivered by default in `dockerd` and is thus present in most major Moby downstreams, is a simple, built-in container orchestrator that is implemented through a combination of SwarmKit and supporting network code. The `overlay` network driver is a core feature of Swarm Mode, providing isolated virtual LANs that allow communication between containers and services across the cluster. This driver is an implementation/user of VXLAN, which encapsulates link-layer (Ethernet) frames in UDP datagrams that tag the frame with the VXLAN metadata, including a VXLAN Network ID (VNI) that identifies the originating overlay network. In addition, the overlay network driver supports an optional, off-by-default encrypted mode, which is especially useful when VXLAN packets traverses an untrusted network between nodes. Encrypted overlay networks function by encapsulating the VXLAN datagrams through the use of the IPsec Encapsulating Security Payload protocol in Transport mode. By deploying IPSec encapsulation, encrypted overlay networks gain the additional properties of source authentication through cryptographic proof, data integrity through check-summing, and confidentiality through encryption. When setting an endpoint up on an encrypted overlay network, Moby installs three iptables (Linux kernel firewall) rules that enforce both incoming and outgoing IPSec. These rules rely on the `u32` iptables extension provided by the `xt_u32` kernel module to directly filter on a VXLAN packet's VNI field, so that IPSec guarantees can be enforced on encrypted overlay networks without interfering with other overlay networks or other users of VXLAN. The `overlay` driver dynamically and lazily defines the kernel configuration for the VXLAN network on each node as containers are attached and detached. Routes and encryption parameters are only defined for destination nodes that participate in the network. The iptables rules that prevent encrypted overlay networks from accepting unencrypted packets are not created until a peer is available with which to communicate. Encrypted overlay networks silently accept cleartext VXLAN datagrams that are tagged with the VNI of an encrypted overlay network. As a result, it is possible to inject arbitrary Ethernet frames into the encrypted overlay network by encapsulating them in VXLAN datagrams. The implications of this can be quite dire, and GHSA-vwm3-crmr-xfxw should be referenced for a deeper exploration. Patches are available in Moby releases 23.0.3, and 20.10.24. As Mirantis Container Runtime's 20.10 releases are numbered differently, users of that platform should update to 20.10.16. Some workarounds are available. In multi-node clusters, deploy a global ‘pause’ container for each encrypted overlay network, on every node. For a single-node cluster, do not use overlay networks of any sort. Bridge networks provide the same connectivity on a single node and have no multi-node features. The Swarm ingress feature is implemented using an overlay network, but can be disabled by publishing ports in `host` mode instead of `ingress` mode (allowing the use of an external load balancer), and removing the `ingress` network. If encrypted overlay networks are in exclusive use, block UDP port 4789 from traffic that has not been validated by IPSec.

Credit: security-advisories@github.com security-advisories@github.com

Affected SoftwareAffected VersionHow to fix
Mobyproject Moby>=1.12.0<20.10.24
Mobyproject Moby>=23.0.0<23.0.3

Never miss a vulnerability like this again

Sign up to SecAlerts for real-time vulnerability data matched to your software, aggregated from hundreds of sources.

Frequently Asked Questions

  • What is CVE-2023-28842?

    CVE-2023-28842 is a vulnerability in the Moby container framework, commonly referred to as Docker, that can allow remote code execution.

  • What is the severity of CVE-2023-28842?

    The severity of CVE-2023-28842 is medium, with a CVSS score of 6.8.

  • How does CVE-2023-28842 affect Moby/Docker?

    CVE-2023-28842 affects versions of Moby/Moby Docker between 1.12.0 and 20.10.24, as well as versions between 23.0.0 and 23.0.3.

  • How can CVE-2023-28842 be exploited?

    CVE-2023-28842 can be exploited by an attacker to execute arbitrary code remotely.

  • Is there a fix for CVE-2023-28842?

    Yes, upgrading to a patched version of Moby/Moby Docker is recommended to address the CVE-2023-28842 vulnerability.

Contact

SecAlerts Pty Ltd.
132 Wickham Terrace
Fortitude Valley,
QLD 4006, Australia
info@secalerts.co
By using SecAlerts services, you agree to our services end-user license agreement. This website is safeguarded by reCAPTCHA and governed by the Google Privacy Policy and Terms of Service. All names, logos, and brands of products are owned by their respective owners, and any usage of these names, logos, and brands for identification purposes only does not imply endorsement. If you possess any content that requires removal, please get in touch with us.
© 2024 SecAlerts Pty Ltd.
ABN: 70 645 966 203, ACN: 645 966 203