CWE
119 416 362
Advisory Published

USN-4752-1: Linux kernel (OEM) vulnerabilities

First published: Thu Feb 25 2021(Updated: )

Daniele Antonioli, Nils Ole Tippenhauer, and Kasper Rasmussen discovered that legacy pairing and secure-connections pairing authentication in the Bluetooth protocol could allow an unauthenticated user to complete authentication without pairing credentials via adjacent access. A physically proximate attacker could use this to impersonate a previously paired Bluetooth device. (CVE-2020-10135) Jay Shin discovered that the ext4 file system implementation in the Linux kernel did not properly handle directory access with broken indexing, leading to an out-of-bounds read vulnerability. A local attacker could use this to cause a denial of service (system crash). (CVE-2020-14314) It was discovered that the block layer implementation in the Linux kernel did not properly perform reference counting in some situations, leading to a use-after-free vulnerability. A local attacker could use this to cause a denial of service (system crash). (CVE-2020-15436) It was discovered that the serial port driver in the Linux kernel did not properly initialize a pointer in some situations. A local attacker could possibly use this to cause a denial of service (system crash). (CVE-2020-15437) Andy Nguyen discovered that the Bluetooth HCI event packet parser in the Linux kernel did not properly handle event advertisements of certain sizes, leading to a heap-based buffer overflow. A physically proximate remote attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2020-24490) It was discovered that the NFS client implementation in the Linux kernel did not properly perform bounds checking before copying security labels in some situations. A local attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2020-25212) It was discovered that the Rados block device (rbd) driver in the Linux kernel did not properly perform privilege checks for access to rbd devices in some situations. A local attacker could use this to map or unmap rbd block devices. (CVE-2020-25284) It was discovered that the block layer subsystem in the Linux kernel did not properly handle zero-length requests. A local attacker could use this to cause a denial of service. (CVE-2020-25641) It was discovered that the HDLC PPP implementation in the Linux kernel did not properly validate input in some situations. A local attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2020-25643) Kiyin (尹亮) discovered that the perf subsystem in the Linux kernel did not properly deallocate memory in some situations. A privileged attacker could use this to cause a denial of service (kernel memory exhaustion). (CVE-2020-25704) It was discovered that the KVM hypervisor in the Linux kernel did not properly handle interrupts in certain situations. A local attacker in a guest VM could possibly use this to cause a denial of service (host system crash). (CVE-2020-27152) It was discovered that the jfs file system implementation in the Linux kernel contained an out-of-bounds read vulnerability. A local attacker could use this to possibly cause a denial of service (system crash). (CVE-2020-27815) It was discovered that an information leak existed in the syscall implementation in the Linux kernel on 32 bit systems. A local attacker could use this to expose sensitive information (kernel memory). (CVE-2020-28588) It was discovered that the framebuffer implementation in the Linux kernel did not properly perform range checks in certain situations. A local attacker could use this to expose sensitive information (kernel memory). (CVE-2020-28915) Jann Horn discovered a race condition in the copy-on-write implementation in the Linux kernel when handling hugepages. A local attacker could use this to gain unintended write access to read-only memory pages. (CVE-2020-29368) Jann Horn discovered that the mmap implementation in the Linux kernel contained a race condition when handling munmap() operations, leading to a read-after-free vulnerability. A local attacker could use this to cause a denial of service (system crash) or possibly expose sensitive information. (CVE-2020-29369) Jann Horn discovered that the romfs file system in the Linux kernel did not properly validate file system meta-data, leading to an out-of-bounds read. An attacker could use this to construct a malicious romfs image that, when mounted, exposed sensitive information (kernel memory). (CVE-2020-29371) Jann Horn discovered that the tty subsystem of the Linux kernel did not use consistent locking in some situations, leading to a read-after-free vulnerability. A local attacker could use this to cause a denial of service (system crash) or possibly expose sensitive information (kernel memory). (CVE-2020-29660) Jann Horn discovered a race condition in the tty subsystem of the Linux kernel in the locking for the TIOCSPGRP ioctl(), leading to a use-after- free vulnerability. A local attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2020-29661) It was discovered that a race condition existed that caused the Linux kernel to not properly restrict exit signal delivery. A local attacker could possibly use this to send signals to arbitrary processes. (CVE-2020-35508)

Affected SoftwareAffected VersionHow to fix
All of
ubuntu/linux-image-5.6.0-1048-oem<5.6.0-1048.52
5.6.0-1048.52
Ubuntu=20.04
All of
ubuntu/linux-image-oem-20.04<5.6.0.1048.44
5.6.0.1048.44
Ubuntu=20.04

Never miss a vulnerability like this again

Sign up to SecAlerts for real-time vulnerability data matched to your software, aggregated from hundreds of sources.

Reference Links

Frequently Asked Questions

  • What is the vulnerability ID for this advisory?

    The vulnerability ID for this advisory is USN-4752-1.

  • What is the severity of USN-4752-1?

    The severity of USN-4752-1 is not mentioned in the advisory.

  • How does the vulnerability in USN-4752-1 work?

    The vulnerability in USN-4752-1 allows an unauthenticated user to complete authentication without pairing credentials via adjacent access.

  • How can I fix USN-4752-1?

    To fix USN-4752-1, update your Linux kernel to version 5.6.0-1048.52 or later.

  • Where can I find more information about USN-4752-1?

    You can find more information about USN-4752-1 in the Ubuntu Security Notices at the following links: [CVE-2020-27152](https://ubuntu.com/security/CVE-2020-27152), [CVE-2020-28915](https://ubuntu.com/security/CVE-2020-28915), [CVE-2020-24490](https://ubuntu.com/security/CVE-2020-24490).

Contact

SecAlerts Pty Ltd.
132 Wickham Terrace
Fortitude Valley,
QLD 4006, Australia
info@secalerts.co
By using SecAlerts services, you agree to our services end-user license agreement. This website is safeguarded by reCAPTCHA and governed by the Google Privacy Policy and Terms of Service. All names, logos, and brands of products are owned by their respective owners, and any usage of these names, logos, and brands for identification purposes only does not imply endorsement. If you possess any content that requires removal, please get in touch with us.
© 2025 SecAlerts Pty Ltd.
ABN: 70 645 966 203, ACN: 645 966 203