First published: Wed Apr 19 2023(Updated: )
It was discovered that the Traffic-Control Index (TCINDEX) implementation in the Linux kernel did not properly perform filter deactivation in some situations. A local attacker could possibly use this to gain elevated privileges. Please note that with the fix for this CVE, kernel support for the TCINDEX classifier has been removed. (CVE-2023-1829) William Zhao discovered that the Traffic Control (TC) subsystem in the Linux kernel did not properly handle network packet retransmission in certain situations. A local attacker could use this to cause a denial of service (kernel deadlock). (CVE-2022-4269) Thadeu Cascardo discovered that the io_uring subsystem contained a double- free vulnerability in certain memory allocation error conditions. A local attacker could possibly use this to cause a denial of service (system crash). (CVE-2023-1032) It was discovered that the TUN/TAP driver in the Linux kernel did not properly initialize socket data. A local attacker could use this to cause a denial of service (system crash). (CVE-2023-1076) It was discovered that the Real-Time Scheduling Class implementation in the Linux kernel contained a type confusion vulnerability in some situations. A local attacker could use this to cause a denial of service (system crash). (CVE-2023-1077) It was discovered that the ASUS HID driver in the Linux kernel did not properly handle device removal, leading to a use-after-free vulnerability. A local attacker with physical access could plug in a specially crafted USB device to cause a denial of service (system crash). (CVE-2023-1079) It was discovered that the io_uring subsystem in the Linux kernel did not properly perform file table updates in some situations, leading to a null pointer dereference vulnerability. A local attacker could use this to cause a denial of service (system crash). (CVE-2023-1583) It was discovered that the Xircom PCMCIA network device driver in the Linux kernel did not properly handle device removal events. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2023-1670) It was discovered that the APM X-Gene SoC hardware monitoring driver in the Linux kernel contained a race condition, leading to a use-after-free vulnerability. A local attacker could use this to cause a denial of service (system crash) or expose sensitive information (kernel memory). (CVE-2023-1855) It was discovered that a race condition existed in the Bluetooth HCI SDIO driver, leading to a use-after-free vulnerability. A local attacker could use this to cause a denial of service (system crash). (CVE-2023-1989) It was discovered that the ST NCI NFC driver did not properly handle device removal events. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2023-1990) Jose Oliveira and Rodrigo Branco discovered that the Spectre Variant 2 mitigations with prctl syscall were insufficient in some situations. A local attacker could possibly use this to expose sensitive information. (CVE-2023-1998) It was discovered that the BigBen Interactive Kids' gamepad driver in the Linux kernel did not properly handle device removal, leading to a use- after-free vulnerability. A local attacker with physical access could plug in a specially crafted USB device to cause a denial of service (system crash). (CVE-2023-25012) It was discovered that a race condition existed in the TLS subsystem in the Linux kernel, leading to a use-after-free or a null pointer dereference vulnerability. A local attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2023-28466) It was discovered that the Bluetooth subsystem in the Linux kernel did not properly initialize some data structures, leading to an out-of-bounds access vulnerability in certain situations. An attacker could use this to expose sensitive information (kernel memory). (CVE-2023-28866) Reima Ishii discovered that the nested KVM implementation for Intel x86 processors in the Linux kernel did not properly validate control registers in certain situations. An attacker in a guest VM could use this to cause a denial of service (guest crash). (CVE-2023-30456) Duoming Zhou discovered that a race condition existed in the infrared receiver/transceiver driver in the Linux kernel, leading to a use-after- free vulnerability. A privileged attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2023-1118)
Affected Software | Affected Version | How to fix |
---|---|---|
All of | ||
ubuntu/linux-image-6.1.0-1009-oem | <6.1.0-1009.9 | 6.1.0-1009.9 |
Ubuntu Ubuntu | =22.04 | |
All of | ||
ubuntu/linux-image-oem-22.04c | <6.1.0.1009.9 | 6.1.0.1009.9 |
Ubuntu Ubuntu | =22.04 |
Sign up to SecAlerts for real-time vulnerability data matched to your software, aggregated from hundreds of sources.
(Contains the following vulnerabilities)
The severity of USN-6033-1 is not provided in the vulnerability report.
A local attacker can exploit the vulnerability in USN-6033-1 to gain elevated privileges.
Ubuntu versions 22.04 are affected by USN-6033-1.
The remedy for USN-6033-1 is to update the affected Linux kernel packages to version 6.1.0-1009.9 or 6.1.0.1009.9, depending on the package.
You can find more information about USN-6033-1 on the Ubuntu Security website.