First published: Wed Jul 12 2023(Updated: )
Jiasheng Jiang discovered that the HSA Linux kernel driver for AMD Radeon GPU devices did not properly validate memory allocation in certain situations, leading to a null pointer dereference vulnerability. A local attacker could use this to cause a denial of service (system crash). (CVE-2022-3108) Zheng Wang discovered that the Intel i915 graphics driver in the Linux kernel did not properly handle certain error conditions, leading to a double-free. A local attacker could possibly use this to cause a denial of service (system crash). (CVE-2022-3707) It was discovered that the infrared transceiver USB driver did not properly handle USB control messages. A local attacker with physical access could plug in a specially crafted USB device to cause a denial of service (memory exhaustion). (CVE-2022-3903) Haowei Yan discovered that a race condition existed in the Layer 2 Tunneling Protocol (L2TP) implementation in the Linux kernel. A local attacker could possibly use this to cause a denial of service (system crash). (CVE-2022-4129) Jordy Zomer and Alexandra Sandulescu discovered that syscalls invoking the do_prlimit() function in the Linux kernel did not properly handle speculative execution barriers. A local attacker could use this to expose sensitive information (kernel memory). (CVE-2023-0458) Jordy Zomer and Alexandra Sandulescu discovered that the Linux kernel did not properly implement speculative execution barriers in usercopy functions in certain situations. A local attacker could use this to expose sensitive information (kernel memory). (CVE-2023-0459) It was discovered that the Human Interface Device (HID) support driver in the Linux kernel contained a type confusion vulnerability in some situations. A local attacker could use this to cause a denial of service (system crash). (CVE-2023-1073) It was discovered that a memory leak existed in the SCTP protocol implementation in the Linux kernel. A local attacker could use this to cause a denial of service (memory exhaustion). (CVE-2023-1074) It was discovered that the TLS subsystem in the Linux kernel contained a type confusion vulnerability in some situations. A local attacker could use this to cause a denial of service (system crash) or possibly expose sensitive information. (CVE-2023-1075) It was discovered that the TUN/TAP driver in the Linux kernel did not properly initialize socket data. A local attacker could use this to cause a denial of service (system crash). (CVE-2023-1076) It was discovered that the Real-Time Scheduling Class implementation in the Linux kernel contained a type confusion vulnerability in some situations. A local attacker could use this to cause a denial of service (system crash). (CVE-2023-1077) It was discovered that the Reliable Datagram Sockets (RDS) protocol implementation in the Linux kernel contained a type confusion vulnerability in some situations. An attacker could use this to cause a denial of service (system crash). (CVE-2023-1078) It was discovered that the ASUS HID driver in the Linux kernel did not properly handle device removal, leading to a use-after-free vulnerability. A local attacker with physical access could plug in a specially crafted USB device to cause a denial of service (system crash). (CVE-2023-1079) Duoming Zhou discovered that a race condition existed in the infrared receiver/transceiver driver in the Linux kernel, leading to a use-after- free vulnerability. A privileged attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2023-1118) It was discovered that the Traffic-Control Index (TCINDEX) implementation in the Linux kernel contained a use-after-free vulnerability. A local attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2023-1281) It was discovered that the Broadcom FullMAC USB WiFi driver in the Linux kernel did not properly perform data buffer size validation in some situations. A physically proximate attacker could use this to craft a malicious USB device that when inserted, could cause a denial of service (system crash) or possibly expose sensitive information. (CVE-2023-1380) Xingyuan Mo discovered that the x86 KVM implementation in the Linux kernel did not properly initialize some data structures. A local attacker could use this to expose sensitive information (kernel memory). (CVE-2023-1513) It was discovered that the Xircom PCMCIA network device driver in the Linux kernel did not properly handle device removal events. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2023-1670) It was discovered that the Traffic-Control Index (TCINDEX) implementation in the Linux kernel did not properly perform filter deactivation in some situations. A local attacker could possibly use this to gain elevated privileges. Please note that with the fix for this CVE, kernel support for the TCINDEX classifier has been removed. (CVE-2023-1829) It was discovered that a race condition existed in the Xen transport layer implementation for the 9P file system protocol in the Linux kernel, leading to a use-after-free vulnerability. A local attacker could use this to cause a denial of service (guest crash) or expose sensitive information (guest kernel memory). (CVE-2023-1859) Jose Oliveira and Rodrigo Branco discovered that the Spectre Variant 2 mitigations with prctl syscall were insufficient in some situations. A local attacker could possibly use this to expose sensitive information. (CVE-2023-1998) It was discovered that a use-after-free vulnerability existed in the iSCSI TCP implementation in the Linux kernel. A local attacker could possibly use this to cause a denial of service (system crash). (CVE-2023-2162) It was discovered that the BigBen Interactive Kids' gamepad driver in the Linux kernel did not properly handle device removal, leading to a use- after-free vulnerability. A local attacker with physical access could plug in a specially crafted USB device to cause a denial of service (system crash). (CVE-2023-25012) Jean-Baptiste Cayrou discovered that the shiftfs file system in the Ubuntu Linux kernel contained a race condition when handling inode locking in some situations. A local attacker could use this to cause a denial of service (kernel deadlock). (CVE-2023-2612) Lianhui Tang discovered that the MPLS implementation in the Linux kernel did not properly handle certain sysctl allocation failure conditions, leading to a double-free vulnerability. An attacker could use this to cause a denial of service or possibly execute arbitrary code. (CVE-2023-26545) It was discovered that a use-after-free vulnerability existed in the HFS+ file system implementation in the Linux kernel. A local attacker could possibly use this to cause a denial of service (system crash). (CVE-2023-2985) Reima Ishii discovered that the nested KVM implementation for Intel x86 processors in the Linux kernel did not properly validate control registers in certain situations. An attacker in a guest VM could use this to cause a denial of service (guest crash). (CVE-2023-30456) Gwangun Jung discovered that the Quick Fair Queueing scheduler implementation in the Linux kernel contained an out-of-bounds write vulnerability. A local attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2023-31436) Sanan Hasanov discovered that the framebuffer console driver in the Linux kernel did not properly perform checks for font dimension limits. A local attacker could use this to cause a denial of service (system crash). (CVE-2023-3161) Patryk Sondej and Piotr Krysiuk discovered that a race condition existed in the netfilter subsystem of the Linux kernel when processing batch requests, leading to a use-after-free vulnerability. A local attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2023-32233) It was discovered that the NET/ROM protocol implementation in the Linux kernel contained a race condition in some situations, leading to a use- after-free vulnerability. A local attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2023-32269)
Affected Software | Affected Version | How to fix |
---|---|---|
All of | ||
ubuntu/linux-image-5.4.0-1024-xilinx-zynqmp | <5.4.0-1024.28 | 5.4.0-1024.28 |
=20.04 | ||
All of | ||
ubuntu/linux-image-xilinx-zynqmp | <5.4.0.1024.27 | 5.4.0.1024.27 |
=20.04 |
Sign up to SecAlerts for real-time vulnerability data matched to your software, aggregated from hundreds of sources.
(Contains the following vulnerabilities)
The vulnerability ID of this advisory is CVE-2022-3108.
The affected software is the Linux kernel with version linux-image-5.4.0-1024-xilinx-zynqmp and Ubuntu version 20.04.
This vulnerability can be exploited by a local attacker to cause a denial of service (system crash).
To fix this vulnerability, update the Linux kernel to version 5.4.0-1024.28 or 5.4.0.1024.27, depending on the package you have installed.
You can find more information about this vulnerability on the Ubuntu Security Advisory website.