First published: Wed Oct 25 2023(Updated: )
Seth Jenkins discovered that the Linux kernel did not properly perform address randomization for a per-cpu memory management structure. A local attacker could use this to expose sensitive information (kernel memory) or in conjunction with another kernel vulnerability. (CVE-2023-0597) It was discovered that the IPv6 implementation in the Linux kernel contained a high rate of hash collisions in connection lookup table. A remote attacker could use this to cause a denial of service (excessive CPU consumption). (CVE-2023-1206) Yu Hao and Weiteng Chen discovered that the Bluetooth HCI UART driver in the Linux kernel contained a race condition, leading to a null pointer dereference vulnerability. A local attacker could use this to cause a denial of service (system crash). (CVE-2023-31083) Ross Lagerwall discovered that the Xen netback backend driver in the Linux kernel did not properly handle certain unusual packets from a paravirtualized network frontend, leading to a buffer overflow. An attacker in a guest VM could use this to cause a denial of service (host system crash) or possibly execute arbitrary code. (CVE-2023-34319) Lin Ma discovered that the Netlink Transformation (XFRM) subsystem in the Linux kernel contained a null pointer dereference vulnerability in some situations. A local privileged attacker could use this to cause a denial of service (system crash). (CVE-2023-3772) Kyle Zeng discovered that the networking stack implementation in the Linux kernel did not properly validate skb object size in certain conditions. An attacker could use this cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2023-42752) Kyle Zeng discovered that the netfiler subsystem in the Linux kernel did not properly calculate array offsets, leading to a out-of-bounds write vulnerability. A local user could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2023-42753) Kyle Zeng discovered that the IPv4 Resource Reservation Protocol (RSVP) classifier implementation in the Linux kernel contained an out-of-bounds read vulnerability. A local attacker could use this to cause a denial of service (system crash). Please note that kernel packet classifier support for RSVP has been removed to resolve this vulnerability. (CVE-2023-42755) Bing-Jhong Billy Jheng discovered that the Unix domain socket implementation in the Linux kernel contained a race condition in certain situations, leading to a use-after-free vulnerability. A local attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2023-4622) Budimir Markovic discovered that the qdisc implementation in the Linux kernel did not properly validate inner classes, leading to a use-after-free vulnerability. A local user could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2023-4623) Alex Birnberg discovered that the netfilter subsystem in the Linux kernel did not properly validate register length, leading to an out-of- bounds write vulnerability. A local attacker could possibly use this to cause a denial of service (system crash). (CVE-2023-4881) It was discovered that the Quick Fair Queueing scheduler implementation in the Linux kernel did not properly handle network packets in certain conditions, leading to a use after free vulnerability. A local attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2023-4921)
Affected Software | Affected Version | How to fix |
---|---|---|
All of | ||
ubuntu/linux-image-4.15.0-1162-aws | <4.15.0-1162.175~16.04.1 | 4.15.0-1162.175~16.04.1 |
Ubuntu Ubuntu | =16.04 | |
All of | ||
ubuntu/linux-image-aws-hwe | <4.15.0.1162.145 | 4.15.0.1162.145 |
Ubuntu Ubuntu | =16.04 |
Sign up to SecAlerts for real-time vulnerability data matched to your software, aggregated from hundreds of sources.
(Contains the following vulnerabilities)
The vulnerability ID for this Linux kernel vulnerability is CVE-2023-0597.
This vulnerability was discovered by Seth Jenkins.
This vulnerability could allow a local attacker to expose sensitive information (kernel memory) or exploit it in conjunction with another kernel vulnerability.
The versions of Ubuntu affected by this vulnerability are Ubuntu 16.04 with Linux kernel versions 4.15.0-1162.175~16.04.1 and 4.15.0.1162.145.
To fix this vulnerability, update your system to Linux kernel version 4.15.0-1162.175~16.04.1 or 4.15.0.1162.145, depending on the affected package.