First published: Tue Nov 28 2023(Updated: )
Ivan D Barrera, Christopher Bednarz, Mustafa Ismail, and Shiraz Saleem discovered that the InfiniBand RDMA driver in the Linux kernel did not properly check for zero-length STAG or MR registration. A remote attacker could possibly use this to execute arbitrary code. (CVE-2023-25775) Yu Hao and Weiteng Chen discovered that the Bluetooth HCI UART driver in the Linux kernel contained a race condition, leading to a null pointer dereference vulnerability. A local attacker could use this to cause a denial of service (system crash). (CVE-2023-31083) Yu Hao discovered that the UBI driver in the Linux kernel did not properly check for MTD with zero erasesize during device attachment. A local privileged attacker could use this to cause a denial of service (system crash). (CVE-2023-31085) Lin Ma discovered that the Netlink Transformation (XFRM) subsystem in the Linux kernel contained a null pointer dereference vulnerability in some situations. A local privileged attacker could use this to cause a denial of service (system crash). (CVE-2023-3772) Chih-Yen Chang discovered that the KSMBD implementation in the Linux kernel did not properly validate SMB request protocol IDs, leading to a out-of- bounds read vulnerability. A remote attacker could possibly use this to cause a denial of service (system crash). (CVE-2023-38430) Chih-Yen Chang discovered that the KSMBD implementation in the Linux kernel did not properly validate command payload size, leading to a out-of-bounds read vulnerability. A remote attacker could possibly use this to cause a denial of service (system crash). (CVE-2023-38432) It was discovered that the NFC implementation in the Linux kernel contained a use-after-free vulnerability when performing peer-to-peer communication in certain conditions. A privileged attacker could use this to cause a denial of service (system crash) or possibly expose sensitive information (kernel memory). (CVE-2023-3863) Laurence Wit discovered that the KSMBD implementation in the Linux kernel did not properly validate a buffer size in certain situations, leading to an out-of-bounds read vulnerability. A remote attacker could use this to cause a denial of service (system crash) or possibly expose sensitive information. (CVE-2023-3865) Laurence Wit discovered that the KSMBD implementation in the Linux kernel contained a null pointer dereference vulnerability when handling handling chained requests. A remote attacker could use this to cause a denial of service (system crash). (CVE-2023-3866) It was discovered that the KSMBD implementation in the Linux kernel did not properly handle session setup requests, leading to an out-of-bounds read vulnerability. A remote attacker could use this to expose sensitive information. (CVE-2023-3867) It was discovered that the Siano USB MDTV receiver device driver in the Linux kernel did not properly handle device initialization failures in certain situations, leading to a use-after-free vulnerability. A physically proximate attacker could use this cause a denial of service (system crash). (CVE-2023-4132) It was discovered that a race condition existed in the Cypress touchscreen driver in the Linux kernel during device removal, leading to a use-after- free vulnerability. A physically proximate attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2023-4134) Thelford Williams discovered that the Ceph file system messenger protocol implementation in the Linux kernel did not properly validate frame segment length in certain situation, leading to a buffer overflow vulnerability. A remote attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2023-44466) Manfred Rudigier discovered that the Intel(R) PCI-Express Gigabit (igb) Ethernet driver in the Linux kernel did not properly validate received frames that are larger than the set MTU size, leading to a buffer overflow vulnerability. An attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2023-45871) Maxim Levitsky discovered that the KVM nested virtualization (SVM) implementation for AMD processors in the Linux kernel did not properly handle x2AVIC MSRs. An attacker in a guest VM could use this to cause a denial of service (host kernel crash). (CVE-2023-5090) It was discovered that the SMB network file sharing protocol implementation in the Linux kernel did not properly handle certain error conditions, leading to a use-after-free vulnerability. A local attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2023-5345)
Affected Software | Affected Version | How to fix |
---|---|---|
All of | ||
ubuntu/linux-image-6.2.0-1009-starfive | <6.2.0-1009.10~22.04.1 | 6.2.0-1009.10~22.04.1 |
=22.04 | ||
All of | ||
ubuntu/linux-image-starfive | <6.2.0.1009.10~22.04.2 | 6.2.0.1009.10~22.04.2 |
=22.04 |
Sign up to SecAlerts for real-time vulnerability data matched to your software, aggregated from hundreds of sources.
(Contains the following vulnerabilities)
The severity of CVE-2023-25775 is high.
A remote attacker can exploit CVE-2023-25775 by using zero-length STAG or MR registration to execute arbitrary code.
Linux kernel versions that are affected by CVE-2023-25775 are 6.2.0-1009.10~22.04.1 and 6.2.0-1009.10~22.04.2.
To fix CVE-2023-25775, update the Linux kernel to version 6.2.0-1009.10~22.04.1 or 6.2.0-1009.10~22.04.2.
More information about CVE-2023-25775 can be found at the following references: [1](https://ubuntu.com/security/CVE-2023-38432), [2](https://ubuntu.com/security/CVE-2023-4132), [3](https://ubuntu.com/security/CVE-2023-4134).